
Distributed Weighted Parameter
Averaging for SVM Training on Big Data

Ayan Das, Raghuveer Chanda, Smriti Agrawal, Sourangshu Bhattacharya
Dept. of Computer Science and Engineering.

Indian Institute of Technology, Kharagpur, India
Email: {ayandas84, raghuveer.chanda, smritiagrawal.iitkgp, sourangshu}@gmail.com

Abstract

Two popular approaches for distributed training of SVMs on
big data are parameter averaging and ADMM. Parameter av-
eraging is efficient but suffers from loss of accuracy with in-
crease in number of partitions, while ADMM in the feature
space is accurate but suffers from slow convergence. In this
paper, we report a hybrid approach called weighted parame-
ter averaging (WPA), which optimizes the regularized hinge
loss with respect to weights on parameters. The problem is
shown to be same as solving SVM in a projected space. We
also demonstrate an O(1

N
) stability bound on final hypothesis

given by WPA, using novel proof techniques. Experimental
results on a variety of toy and real world datasets show that
our approach is significantly more accurate than parameter
averaging for high number of partitions. It is also seen the
proposed method enjoys much faster convergence compared
to ADMM in feature space.

1 Introduction

With the growing popularity of Big Data platforms like
Hadoop (Apache Software Foundation 2016) for various
machine learning and data analytics applications (Mann
et al. 2009; Zinkevich et al. 2010), distributed training of
Support Vector Machines (SVMs)(Cortes and Vapnik 1995)
on Big Data platforms have become increasingly impor-
tant. Big data platforms such as Hadoop (Apache Software
Foundation 2016) provide simple programming abstraction
(Map Reduce), scalability and fault tolerance at the cost of
distributed iterative computation being slow and expensive
(Mann et al. 2009). Thus, there is a need for SVM training
algorithms which are efficient both in terms of the number
of iterations and volume of data communicated per iteration.

The problem of distributed training of support vector ma-
chines (SVM) (Forero, Cano, and Giannakis 2010) in partic-
ular, and distributed regularized loss minimization (RLM) in
general (Boyd et al. 2011; Mann et al. 2009), has received a
lot of attention in the recent times. Here, the training data is
partitioned into M -nodes, each having L datapoints. Param-
eter averaging (PA), also called “mixture weights” (Mann et
al. 2009) or “parallelized SGD” (Zinkevich et al. 2010), sug-
gests solving an appropriate RLM problem on data in each
node, and use average of the resultant parameters. Hence,

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

a single distributed iteration is needed. However, as shown
in this paper, the accuracy of this approach reduces with in-
crease in number of partitions. Another interesting result
described in (Mann et al. 2009) is a bound of O(1

ML) on the
stability of the final hypothesis, which results in a bound on
deviation from optimizer of generalization error.

Another popular approach for distributed RLM is alter-
nating direction method of multipliers (ADMM) (Boyd et
al. 2011; Forero, Cano, and Giannakis 2010). This approach
tries to achieve consensus between parameters at different
nodes while optimizing the objective function. It achieves
optimal performance irrespective of the number of parti-
tions. However, this approach needs many distributed it-
erations. Also, number of parameters to be communicated
among machines per iteration is same as the dimension of
the problem. This can be ∼ millions for some practical
datasets, e.g. webspam (Chang and Lin 2011).

In this paper, we propose a hybrid approach which uses
weighted parameter averaging and learns the weights in a
distributed manner from the data.In particular, we derived a
novel SVM-like formulation for learning the weights of the
weighted parameter averaging (WPA) model. The dual of
WPA turns out to be same as SVM dual, with data projected
in a lower dimensional space. We propose an ADMM (Boyd
et al. 2011) based distributed algorithm (DWPA), and an ac-
celerated version (DWPAacc), for learning the weights.

Another contribution is a O(1
ML) bound on the stability

of final hypothesis leading to a bound on deviation from op-
timizer of generalization error. This requires a novel proof
technique as both the original parameters and the weights
are solutions to optimization problems (section 2.4). Em-
pirically, we show that accuracy of parameter averaging de-
grades with increase in the number of partitions. Experi-
mental results on real world datasets show that DWPA and
DWPAacc achieve better accuracies than PA as the number
of partitions increase, while requiring lower number of iter-
ations and time per iteration compared to ADMM.

2 Distributed Weighted Parameter

Averaging (DWPA)

In this section, we describe the distributed SVM training
problem, the proposed solution approach and a distributed
algorithm. We describe a bound on stability of the final hy-

The AAAI-17 Workshop on
Distributed Machine Learning

WS-17-08

472

pothesis in section 2.4. Note that, we focus on the distributed
SVM problem for simplicity. The techniques described here
are applicable to other distributed regularized risk minimiza-
tion problems.

2.1 Background

Given a training dataset S = {(xi, yi) : i = 1, · · · ,ML,
yi ∈ {−1,+1},xi ∈ Rd}, the linear SVM problem (Cortes
and Vapnik 1995) is given by:

min
w

λ‖w‖22 +
1

m

ML∑

i=1

loss(w; (xi, yi)), (1)

where, λ is the regularization parameter and the hinge loss
is defined as loss(w; (xi, yi)) = max(0, 1− yiw

Txi). The
separating hyperplane is given by the equation wTx+b = 0.
Here we include the bias b within w by making the following
transformation, w =

[
wT , b

]T
and xi =

[
xT
i , 1

]T
.

The above SVM problem can be posed to be solved in a
distributed manner, which is interesting when the volume of
training data is too large to be effectively stored and pro-
cessed on a single computer.

Let the dataset which is partitioned into M partitions be
(Sm, m = 1, . . . ,M), each having L datapoints. Hence,
S = S1∪, . . . ,∪SM , where Sm = {(xml, yml)}, l =
1, . . . , L. Under this setting, the SVM problem (Eqn 1), can
be stated as:

min
wm,z

M∑

m=1

L∑

l=1

loss(wm; (xml, yml)) + r(z)

s.t.wm − z = 0,m = 1, · · · ,M, l = 1, . . . , L

where loss() is as described above and r(z) = λ‖z‖2.This
problem is solved in (Boyd et al. 2011) using ADMM (see
section 2.3).

Another method for solving distributed RLM problems,
called parameter averaging (PA), was proposed by Mann et.
al. (Mann et al. 2009), in the context of conditional maxi-
mum entropy model.

ŵm = argmin
w

1

L

L∑

l=1

loss(w;xml, yml) + λ‖w‖2

m = 1, . . . ,M

be the standard SVM solution obtained by training on par-
tition Sm. Mann et al. (Mann et al. 2009) suggests the ap-
proximate final parameter to be the arithmetic mean of the
parameters learnt on individual partitions, (ŵm). Hence:

wPA =
1

M

M∑

m=1

ŵm

Zinekevich et al. (Zinkevich et al. 2010) have also suggested
a similar approach where ŵm’s are learnt using SGD. We
tried out this approach for SVM. Note that assumptions re-
garding differentiability of loss function made in (Boyd et
al. 2011) can be relaxed in case of convex loss function with

an appropriate definition of bregmann divergence using sub-
gradients (see (Mohri, Rostamizadeh, and Talwalkar 2012),
section 2.4). The results (reported in section 3) show that
the method fails to perform well as the number of partitions
increase. This drawback of the above mentioned approach
motivated us to propose the weighted parameter averaging
method described in the next section.

2.2 Weighted parameter averaging (WPA)

The parameter averaging method uses uniform weight of
1
M for each of the M components. One can conceive
a more general setting where the final hypothesis is a
weighted sum of the parameters obtained on each partition:
w =

∑M
m=1 βmŵm, where ŵm are as defined above and

βm ∈ R,m = 1, . . . ,M . Thus, β = [β1, · · · , βM]T =
[1
M , . . . , 1

M] achieves the PA setting. Note that Mann et al.
(Mann et al. 2009) proposed β to be in a simplex. However,
no scheme was suggested for learning an appropriate β.

Our aim is to find the optimal set of weights β which at-
tains the lowest regularized loss.

Let Ŵ = [ŵ1, · · · , ŵM], so that w = Ŵβ. Substitut-
ing w in Eqn. 1, the regularized loss minimization problem
becomes:

min
β,ξ

λ‖Ŵβ‖2 + 1

ML

M∑

m=1

l∑

i=1

ξmi (2)

subject to: ymi(β
TŴTxmi) ≥ 1− ξmi, ∀i,m

ξmi ≥ 0, ∀m = 1, . . . ,M, i = 1, . . . , l

Note that, here the optimization is only w.r.t. β and ξm,i.
Ŵ is a pre-computed parameter. Next we can derive the
dual formulation by writing the lagrangian and eliminating
the primal variables. The Lagrangian is given by:

L(β, ξmi, αmi, μmi) = λ‖Ŵβ‖2 + 1

ML

∑

m,i

ξmi

+
∑

m,i

αmi(ymi(β
TWTxmi)− 1 + ξmi)−

∑

m,i

μmiξmi

Differentiating the Lagrangian w.r.t. β and equating to
zero, we get:

β =
1

2λ
(ŴTŴ)−1(

∑

m,i

αmiymiŴ
Txmi)

Differentiating L w.r.t. ξmi and equating to zero, ∀i ∈
1, · · · , L and ∀m ∈ 1, · · · ,M , implies 1

ML −αmi−μmi =

0. Since μmi ≥ 0 and αmi ≥ 0, 0 ≤ αmi ≤ 1
ML . Substi-

tuting the value of β in the Lagrangian L, we get the dual
problem:

min
α

L(α) =
∑

m,i

αmi − 1

4λ
∑

m,i

∑

m′,j

αmiαm′jymiym′j(x
T
miŴ(ŴTŴ)−1ŴTxm′j)

subject to: 0 ≤ αmi ≤ 1

ML
∀i ∈ 1, · · · , L,m ∈ 1, · · · ,M

473

Note that this is equivalent to solving SVM using the pro-
jected datapoint (Hxmi, ymi), instead of (xmi, ymi), where
H = Ŵ(ŴTŴ)−1ŴT , which is the projection on col-
umn space of Ŵ. Hence the performance of the method is
expected to depend on size and orientation of the column
space of Ŵ. Next, we describe distributed algorithms for
learning β.

2.3 Distributed algorithms for WPA using
ADMM

In the distributed setting, we assume the presence of a cen-
tral (master) computer which stores and updates the final hy-
pothesis. The partitions of training set S1, . . . ,SM are dis-
tributed to M (slave) computers, where the local optimiza-
tions are performed. The master needs to communicate to
slaves and vice versa. However, no communication between
slaves is necessary. Thus, the underlying networks has a star
topology, which is also easily implemented using Big data
platforms like Hadoop (Apache Software Foundation 2016).

Let γm, for m = 1, · · · ,M be the weight values at the M
different nodes and β be the value of the weights at the cen-
tral server. The formulation given in Eqn. 2 can be written
as:

min
γm,β

1

ML

M∑

m=1

L∑

l=1

loss(Ŵγm;xml, yml) + r(β)

s.t.γm − β = 0,m = 1, · · · ,M,

where r(β) = λ‖Ŵβ‖2.The augmented lagrangian for the
above problem is:

L(γm,β,λ) =
1

ML

M∑

m=1

L∑

l=1

loss(Ŵγm;xml, yml)+

r(β) +
M∑

i=1

ρ

2
‖γm − β‖2 +

M∑

i=1

ψT
m(γm − β),

where ψm is the lagrange multiplier vector corresponding
to mth constraint.

Let Am ∈ RL×d = −diag(ym)XmŴ . Using results
from (Boyd et al. 2011), the ADMM updates for solving the
above problem can derived as:

γk+1
m := argmin

γ
(loss(Aiγ) + (ρ/2)‖γml − βk + uk

m‖22)
βk+1 := argmin

β
(r(β) + (Mρ/2)‖β − γk+1 − uk‖22)

uk+1
m = uk

m + γk+1
m − βk+1.

where, um = 1
ρψm, γ = 1

M

∑M
m=1 γm and u =

1
M

∑M
m=1 um and the superscript k denotes the iteration

counts. Algorithm 1 describes the full procedure.
A heuristic called overrelaxation (Boyd et al. 2011) is of-

ten used for improving the convergence rate of ADMM. For
overrelaxation, the updates for βk (line 1 and uk

m (line 1) are
obtained by replacing γk with γ̂k

m = α × γk
m + (1 − α) ×

Algorithm 1 Distributed Weighted Parameter Averaging
(DWPA)

input : Partitioned datasets Sm, SVM parameter learnt for
each partition ŵm, ∀m = 1, · · · ,M

output : Optimal weight vector β
1: Initialize β = 1,γm = 1,um = 1, ∀m ∈ {1, · · · ,M}
2: while k < T do
3: {Executed on slaves}
4: for m ← 1 to M do
5: γk

m := argminγm(1T (Amγm+1)++ρ/2‖γk−1
m −

βk−1 − uk−1
m ‖22)

6: end for
7: {Executed on master}
8: βk := 1

2λ (Ŵ
T Ŵ +MρIm)−1Mρ(γk + uk−1)

9: for m ← 1 Tto M do
10: uk

m = uk−1
m + γk

m − βk

11: end for
12: end while

βk−1, in algorithm 1. We implemented this heuristic for
both DSVM and DWPA. We call them accelarated DSVM
(DSVMacc) and accelarated DWPA (DWPAacc).

2.4 Bound on stability of WPA

In this section, we derive a bound of O(1
ML) on stabil-

ity of the final hypothesis returned by WPA algorithm de-
scribed in Eqn. 2. A similar bound was derived by Mann
et al. (Mann et al. 2009) on the stability of PA. This
leads to a O(1

ML) bound on deviation from optimizer of
generalization error. Let S = {S1, · · · , SM} and S′ =
{S′

1, · · · , S′
M} be two datasets with M partitions and L

datapoints per partition, differing in only one datapoint.
Hence, Sm = {zm1, · · · , zmL}, S′

m = {z′m1, · · · , z′mL}
where zml = (xml, yml), z

′
ml = (x′

ml, y
′
ml). Further,

S1 = S′
1, · · · , SM−1 = S′

M−1, and SM and S′
M differs

at single point zML and z′ML. Also, let ‖x‖ ≤ R, ∀x.
Let Ŵ = [ŵS1

, · · · , ŵSM
] and Ŵ ′ = [ŵS′

1
, · · · , ŵS′

M
]

where, ŵSi
= argminw λ‖w‖2 + 1

L

∑
i∈Si

max(0, 1 −
ywTx). We assume ‖Ŵ‖F = ‖Ŵ′‖F = 1. Hence,
‖ŵm‖2 = ‖ŵ′

m‖2 = 1
M , ∀m ∈ {1, · · · ,M}.

We also define the following quantities:

β = argmin
β

λ‖Ŵβ‖2 + 1

ML

M∑

i=1

∑

z∈Si

max(0, 1− y(Ŵβ)Tx)

β′ = argmin
β

λ‖Ŵ′β‖2+

1

ML

M∑

i=1

∑

z′∈S′
i

max(0, 1− y′(Ŵβ)Tx′)

β̃ = argmin
β

λ‖Ŵ′β‖2+ 1

ML

M∑

i=1

∑

z∈Si

max(0, 1−y(Ŵ′β)Tx)

Also, let w = Ŵβ, w′ = Ŵ′β′ and w̃ = Ŵ′β̃.

474

We are interested in deriving a bound on ‖w−w′‖, which
decompose as: ‖w −w′‖ ≤ ‖w − w̃‖ + ‖w̃ −w′‖. Intu-
itively, the first term captures the change from Ŵ to Ŵ′
and second term captures change in dataset. We proved that
‖w̃−w′‖ is O(1

ML) by showing bounds on ‖w−w̃‖ which
require bounds on ‖β − β̃‖ and ‖Ŵ − Ŵ′‖.

3 Experimental Results

In this section, we experimentally analyze and compare the
methods proposed, distributed weighted parameter averag-
ing (DWPA) and accelerated DWPA (DWPAacc) described
in section 2.3, with parameter averaging (PA) (Mann et al.
2009), Distributed SVM (DSVM) using ADMM, and accel-
erated DSVM (DSVMacc) (Boyd et al. 2011).

For our experimentation all the algorithms have been im-
plemented in Scala using Apache Spark libraries on a 20
node CDH 5.1 cluster. Each node is a HP Proliant server
with;

• 2 hex-core processors

• 128 GB RAM

• 4 TB Hard Disk

• OS: CentOS 6.5

We used real world datasets (described in table 1) for our
experiments. Real world datasets were obtained from LIB-
SVM website (Chang and Lin 2011). Samples for real world
datasets were selected randomly. The datasets were selected
to have various ranges of feature count and sparsity.

3.1 Comparison of Accuracies

In this section,we compare accuracies obtained by various
algorithms on real world datasets. Figure 1 reports test
set accuracies for PA, WPA and SVM on three real world
datasets with varying size of partitions. It is clear that per-
formance of PA degrades dramatically as the number of par-
tition increases..

We also observe that performance of WPA improves with
increase in number of partitions. This is due to fact that
dimension of space on which xml’s are projected using H
(section 2.2) increases, thus reducing the information loss
caused by projection. Finally, as expected WPA performs
slightly worse than DSVM.

3.2 Convergence Analysis and Time comparison

In this section, we compare the convergence properties of
DSVM, DSVMacc, DWPA, and DWPAacc. In Figure 2, we
show variation of primal residual (disagreement between pa-
rameters on various partitions) with iterations. It is clear that
DWPA and DWPAacc show much lesser disagreement com-
pared to DSVM and DSVMacc, thus showing faster conver-
gence.

In Figure 3,we show the variation of test set accuracy
with iterations. The same behaviour is apparent here, with
testset accuracy of DWPA and DWPAacc converging much
faster than DSVM and DSVMacc. One of the reasons
is also that DWPA has an obvious good starting point of
β = [1

M , . . . , 1
M] corresponding to PA.

 80

 85

 90

 95

 100

 0 50 100 150 200

T
es

t
A

cc
u

ra
cy

Partition Size

PA
DSVM
DWPA

 60

 65

 70

 75

 80

 85

 90

 95

 100

 0 50 100 150 200

T
es

t
A

cc
u

ra
cy

Partition Size

PA
DSVM
DWPA

 80

 85

 90

 95

 100

 0 50 100 150 200

T
es

t
A

cc
u

ra
cy

Partition Size

PA
DSVM
DWPA

Figure 1: Variation of accuracy with number of partitions.
From top gisette(first), epsilon(second) and real-sim(third)
for partition size 1, 10, 50, 100 and 200

3.3 Convergence time

In this section, we report the time taken to achieve the best
testset accuracy for the different partitionings of the datasets
using the different algorithms. Table 2 and 3 summarizes
the results. Here, we assume that each data partition in al-
ready distributed to a different slave node.

Table 4 reports the average time taken in seconds by
DWPA and DSVM for completing one iteration as a function

475

Dataset Name Number of training instances Number of test instances Number of features
real-sim 3,000 5,000 20,958
gisette 6,000 1,000 5,000

webspam 320,000 33,000 16,609,143
epsilon 400,000 100,000 2,000

url 2,396,130 15,000 3,231,9614
kdda 8,407,752 510,302 20,216,830
kddb 19,264,097 748,401 29,890,095

splice-site 10,000,000 4,627,840 11,725,480

Table 1: Training and test dataset size

webspam
No. of

partitions ADMM ADMMacc DWPA DWPAacc
10 192(93.4) 241(93.4) 199(92.06) 93(92.06)
20 271(93.4) 271(93.4) 354(91.86) 210.5(91.86)
40 469.5(93.4) 429(93.4) 408(91.97) 184(91.97)
80 748(93.4) 680(93.4) 320(92.30) 176(92.30)

epsilon
10 1044(89.8) 1044(89.8) 457(89.2) 417(89.2)
20 840.15(89.8) 747.08(89.8) 356(89) 296.5(89)
40 915.16(89.8) 915.16(89.8) 277.8(88.67) 268.24(88.67)
80 678(89.8) 498(89.8) 225(88.2) 203(88.2)

Table 2: Time taken in seconds (best test set accuracy) for DWPA, ADMM and accelerated versions of DWPA and
ADMM(DWPAacc and ADMMacc respectively)

Dataset Name ADMM DWPA
Test Accuracy Total time Test Accuracy Total time

epsilon 89.8 12.7 89.2 7.6
webspam 93.4 5.5 92.3 5.33

gisette 97 50 97.4 2
url 99.46 126 96.3 27.5

kdda 86.78 104.2 86.78 3.1
kddb 86.2 49.7 86.2 5.7

splice-site 99.58 239.5 99.58 119.7

Table 3: Comparison of running time (min) and testset accuracy for the two algorithms.

DWPA DSVM
Number of
partitions epsilon webspam epsilon webspam

10 2 2 72 7
20 3.5 3.5 43.61 5
40 2.24 4 34.78 4.5
80 2 4 12 5

Table 4: Average time per iteration(in seconds)

of number of partitions. It is clear that DWPA takes much
lesser time due to much smaller number of variables in the
local optimization problem (Feature dimensions for DSVM,
number of partitions for DWPA). There is slight increase in
time per iteration with increase in number of partitions due
to increase in number of variables.

4 Conclusion and Future Work

We propose a novel approach for training SVM in a dis-
tributed manner by learning an optimal set of weights for

combining the SVM parameters independently learnt on par-
titions of the entire dataset. Experimental results show that
our method is much more accurate than parameter averag-
ing and is much faster than training SVM in feature space.
Moreover, our method reaches an accuracy close to that
of SVM trained in feature space in a much shorter time.
We propose a novel proof to show that the stability final
SVM parameter learnt using DWPA is O(1

ML). Also, our
method requires much less network band-width as compared
to DSVM when the number of features for a given dataset is

476

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 5 10 15 20 25 30

P
ri

m
a
l

R
es

id
u

a
l

Iteration

DSVMacc
DWPAacc

DSVM
DWPA

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 5 10 15 20 25 30

P
ri

m
a
l

R
es

id
u

a
l

Iteration

DSVMacc
DWPAacc

DSVM
DWPA

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 5 10 15 20 25 30

P
ri

m
a
l

R
es

id
u

a
l

Iteration

DSVMacc
DWPAacc

DSVM
DWPA

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30

P
ri

m
a
l

R
es

id
u

a
l

Iteration

DSVMacc
DWPAacc

DSVM
DWPA

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30

P
ri

m
a
l

R
es

id
u

a
l

Iteration

DSVMacc
DWPAacc

DSVM
DWPA

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 5 10 15 20 25 30

P
ri

m
a
l

R
es

id
u

a
l

Iteration

DSVMacc
DWPAacc

DSVM
DWPA

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

P
ri

m
a

l
R

es
id

u
a

l

Iterations

DSVM
DWPA

DWPAacc
ADMMacc

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

P
ri

m
a

l
R

es
id

u
a

l

Iterations

DSVM
DWPA

DWPAacc
ADMMacc

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

P
ri

m
a

l
R

es
id

u
a

l

Iterations

DSVM
DWPA

DWPAacc
ADMMacc

Figure 2: Convergence of primal residual for real-sim (first)
gisette (second) epsilon (third) webspam (fourth)

very large as compared to the number of partitions, which is
the usual scenerio for Big Data. In future we would also like
to compare with other distributed learning algorithms, such
as CoCoA (Jaggi et al. 2014) and CoCoA+ (Ma et al. 2015).

References

Apache Software Foundation. 2016. Hadoop.
Boyd, S.; Parikh, N.; Chu, E.; Peleato, B.; and Eckstein,
J. 2011. Distributed optimization and statistical learning
via the alternating direction method of multipliers. Found.
Trends Mach. Learn. 3(1):1–122.
Chang, C.-C., and Lin, C.-J. 2011. LIBSVM: A library for
support vector machines. ACM Transactions on Intelligent
Systems and Technology 2:27:1–27:27. Software available
at http://www.csie.ntu.edu.tw/ cjlin/libsvm.
Cortes, C., and Vapnik, V. 1995. Support-vector networks.
Machine Learning 20(3):273–297.
Forero, P. A.; Cano, A.; and Giannakis, G. B. 2010.
Consensus-based distributed support vector machines. J.
Mach. Learn. Res. 11:1663–1707.
Jaggi, M.; Smith, V.; Takáč, M.; Terhorst, J.; Krishnan, S.;
Hofmann, T.; and Jordan, M. I. 2014. Communication-
efficient distributed dual coordinate ascent. In Proceedings
of the 27th International Conference on Neural Information
Processing Systems, NIPS’14, 3068–3076. Cambridge, MA,
USA: MIT Press.

 40

 50

 60

 70

 80

 90

 100

 50 100 150 200 250 300 350 400 450 500

T
es

t
A

cc
u

ra
cy

Iterations

DSVMacc
DWPAacc

DWPA
DSVM

PA
 40

 50

 60

 70

 80

 90

 100

 50 100 150 200 250 300 350 400 450 500

T
es

t
A

cc
u

ra
cy

Iterations

DSVMacc
DWPAacc

DWPA
DSVM

PA
 40

 50

 60

 70

 80

 90

 100

 50 100 150 200 250 300 350 400 450 500

T
es

t
A

cc
u

ra
cy

Iterations

DSVMacc
DWPAacc

DWPA
DSVM

PA

 40

 50

 60

 70

 80

 90

 100

 50 100 150 200 250 300 350 400 450 500

T
es

t
A

cc
u

ra
cy

Iterations

DSVMacc
DWPAacc

DWPA
DSVM

PA
 40

 50

 60

 70

 80

 90

 100

 50 100 150 200 250 300 350 400 450 500

T
es

t
A

cc
u

ra
cy

Iterations

DSVMacc
DWPAacc

DWPA
DSVM

PA
 40

 50

 60

 70

 80

 90

 100

 50 100 150 200 250 300 350 400 450 500

T
es

t
A

cc
u

ra
cy

Iterations

DSVMacc
DWPAacc

DWPA
DSVM

PA

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

T
es

t
A

cc
u

ra
cy

Iterations

DSVM
DWPA

DWPAacc
ADMMacc

PA
 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

T
es

t
A

cc
u

ra
cy

Iterations

DSVM
DWPA

DWPAacc
ADMMacc

PA
 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

T
es

t
A

cc
u

ra
cy

Iterations

DSVM
DWPA

DWPAacc
ADMMacc

PA

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

T
es

t
A

cc
u

ra
cy

Iterations

DSVM
DWPA

DWPAacc
ADMMacc

PA

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

T
es

t
A

cc
u

ra
cy

Iterations

DSVM
DWPA

DWPAacc
ADMMacc

PA

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

T
es

t
A

cc
u

ra
cy

Iterations

DSVM
DWPA

DWPAacc
ADMMacc

PA

Figure 3: Convergence of test accuracy for real-sim (first)
gisette (second) epsilon (third) webspam (fourth)

Ma, C.; Smith, V.; Jaggi, M.; Jordan, M. I.; Richtrik, P.;
and Takc, M. 2015. Adding vs. Averaging in Distributed
Primal-Dual Optimization. In Proceedings of the 32nd In-
ternational Conference on Machine Learning, volume 37 of
JMLR Proceedings, 1973–1982. JMLR.org.
Mann, G.; McDonald, R.; Mohri, M.; Silberman, N.; and
Walker, D. 2009. Efficient large-scale distributed training
of conditional maximum entropy models. In Bengio, Y.;
Schuurmans, D.; Lafferty, J.; Williams, C. K. I.; and Cu-
lotta, A., eds., Advances in Neural Information Processing
Systems 22. Neural Information Processing Systems, 2010.
1231–1239.
Mohri, M.; Rostamizadeh, A.; and Talwalkar, A. 2012.
Foundations of Machine Learning. The MIT Press.
Zinkevich, M.; Weimer, M.; Smola, A. J.; and Li, L. 2010.
Parallelized stochastic gradient descent. In NIPS, 2595–
2603.

477

