Lecture Plan

Distributed Operating Systems (CSE52111) [L-T-P = 3-1-0] II Semester M.Tech. (Computer Application) Subject:

Class:

Sl. No.	Name of the Topics	Number of
		Lectures
1.	Details of Traditional Operating System	Prerequisite
2.	Computer Networks	Prerequisite
3.	Introduction to Distributed Systems	
	Introduction to Distributed Computing System Models, Distributed Operating	
	System, Difference between Network and Distributed System, Goals of	3
	Distributed System, Hardware Concept.	
4.	Message Passing	
	Desirable features, Issues in IPC, Synchronization, Buffering, Encoding and	5
	Decoding, Process Addressing, Failure Handling, Group Communication.	
5.	Remote Procedure Calls	
	RPC Model, Transparency of RPC, Implementation of RPC Mechanism, RPC	
	Messages, Marshalling, Server Management (Stateful and Stateless Server),	5
	Parameter-Passing Semantics (Call-by-Value, Call-by-Reference), Call-	
	Semantics, Communication Protocols for RPCs, Client-Server Binding, Special	
	Types of RPCs.	
6.	Distributed Shared Memory	
	General Architecture of DSM Systems, Design and Implementation Issues of	
	DSM, Structure of Shared-Memory Space, Consistency Models, Replacement	5
	Strategy, Thrashing, Advantages of DSM	
7.	Synchronization	
	Clock Synchronization, Event Ordering, Mutual Exclusion, Deadlock, Election	5
	Algorithms	
8.	Resource Management	
	Task Assignment Approach, Load-Balancing Approach, Load-Sharing Approach	5
9.	Process Management	4
	Process Migration, Threads	
10.	Distributed File Systems	_
	File Models, File-Accessing Models, File-Sharing Semantics, File-Caching	4
	Schemes, File Replication	
11.	Security	
	Potential Attacks to Computer Systems, Cryptography, Authentication, Access	_
	Control, Digital Signatures	4
TOTAL		40