Course Type	Course Code	Name of Course		Т	Р	Credit
DC4	CSC206	Algorithm Design & Analysis		0	0	9

Course Objective

Provide fundamental knowledge about algorithms, algorithm design paradigms, proof of correctness and measurement of space and time complexity.

Learning Outcomes

Upon successful completion of this course, students will:

- Learn about various paradigms of designing algorithms
- Learn about different techniques of analyzing algorithms
- Acquire in depth knowledge about proving correctness of an algorithm
- Learn about different complexity classes

Unit No.	Topics to be Covered	Lecture Hours	Learning Outcome
1.	Introduction: Notions of Algorithms, Algorithm	6	Understanding of algorithm design
	Paradigms, Complexity Analysis, Asymptotic Notations,		techniques, validation of algorithms, and
	Practical Complexities.		space and time complexity measurement of
			algorithms.
2.	Divide-and Conquer Paradigm: Recurrence Relations,	8	To understand fundamentals of divide and
	Order Statistics, Strassen's Matrix Multiplication,		conquer strategy, recurrence relations,
	Finding the Closest Pair of Points		solving recurrence relations
3.	Greedy Algorithms: Fractional Knapsack Problem,	8	Understanding of different problems solved
	Activity Selection Problem, Minimum Cost Spanning		by greedy method and their proof of
	Trees, Single-Source Shortest Paths		correctness
4.	Dynamic Programming: Weighted Interval Scheduling,	8	Understanding of different problems solved
	Subset Sum and Knapsack, Matrix Chain Multiplication,		by dynamic programming and their proof of
	Single-Source and All-Pairs Shortest Paths, Traveling		correctness
	salesperson problem, Longest Common Subsequence.		
5.	Back Tracking: 8-Queens Problem, Graph Coloring,	4	To understand fundamentals of back
	Hamiltonian Cycles.		tracking technique.
6.	Branch-and-Bound: Least Cost Search, 15-Puzzle	3	Understanding of different problems solved
	Problem.		by branch-and-bound technique.
7.	NP-Hard and NP Complete Problems	5	To understand the basic principles of
			deterministic and non-deterministic
			algorithms, polynomial time reductions.

Text Books:

- 1. Cormen, Leiserson, Rivest and Stein, Introduction to Algorithms, Prentice Hall of India.
- 2. E. Horowitz, S. Sahni, and S. Rajasekaran, Fundamentals of Computer Algorithms, Universities Press.

Reference Books:

J. Kleinberg and E. Tardos, Algorithm Design, Pearson Education.