Course Type	Course Code	Name of Course	L	Т	Р	Credit
DC5	CSC207	Computer Architecture	3	0	0	9

Course Objective

To provide fundamental knowledge about computer architecture which includes ILP, TLP, DLP and Memory design. **Learning Outcomes**

Enhance the ability to understand different techniques in computer architecture.

Unit No.	Topics to be Covered	Lecture Hours	Learning Outcome
1	Introduction: Fundamentals of Quantitative Design and Analysis: Introduction, Classes of Computers, Defining Computer Architecture, Trends in Technology, Power, Energy and Cost, Measuring, Reporting, and Summarizing Performance, Amdahl's law, processor performance equation, and Quantitative Principles of Computer Design.	8	Understanding the importance of Computer architecture and other quantitative parameters
2	Instruction set Architecture: Introduction, Classifying Instruction Set Architectures, Memory Addressing, Type and Size of Operands, Operations in the Instruction, Instructions for Control Flow, Encoding an Instruction Set, CISC and RISC processors.	3	Understanding basics of instruction set architectures and related topics
3	Pipelining: Introduction, Pipeline Hazards, Pipelining Implemented and hardness Pipeline for floating-point operations, its hazards and minimization	4	Learning pipelining techniques and methods to overcome pipeline hazards.
4	Branch prediction techniques: delayed branches, 1-bit and 2-bit predictors, Global and local predictors, Tournament predictors, return address stack	6	How prediction techniques solve bench hazard problems
5	Instruction-Level Parallelism (ILP): Dynamic Scheduling: Examples and the Algorithm, Hardware-Based Speculation, Exploiting ILP Using Dynamic Scheduling, Multiple Issue, and Speculation, Limitations, Multithreading.	8	Learning advanced topics in instruction level parallelism like dynamic techniques.
6	Instruction-Level Parallelism (ILP): Loop unrolling, VLIW and Trace scheduling	3	Learning compiler techniques to address various related to ILP
7	Thread-Level Parallelism: Flynn's classification of computers, Introduction Centralized Shared-Memory Architectures. Memory Coherence, Synchronization, Models of Memory Consistency.	7	Learning topic like coherence problem and memory consistency
8	Introduction, Cache Optimizations and Performance:	3	Understanding the importance of memory hierarchy in computer architecture and cache optimization techniques.

Text Books:

John L. Hennessy and David A Patterson, Computer Architecture, Morgan Kauffnman, 5th Edition, 2012 **Reference Books:**

1. William Stallings, Computer Organization and Architecture, Prentice Hall of India, 9th Edition, 2012.