
Course

Type

Course

Code
Name of Course L T P Credit

DC7 CSC209 Operating Systems 3 0 0 9

Course Objective

This syllabus is designed in such a manner that it will provide the basic and fundamental knowledge on Operating

Systems. The proposed syllabus is designed to cover Operating Systems in detail to provide better research and industry

oriented understanding for UG students.

Learning Outcomes

On successful completion of this unit students will be able to:

● Identify the basic concept and describe the main responsibilities of a contemporary operating system (OS)

and to explain the history leading to their current form.

● recognize and give examples of conflicting goals and compromises necessary in implementing an OS and

configuring its run-time parameters

● identify and list application scenarios in which it is useful to use multiple threads of execution (including the

fundamental need for multitasking in an OS)

● explain the concept of a process and the process control block (PCB) in a typical OS; recognize a PCB upon

seeing the C code of such, and assess whether such a data structure contains everything that is necessary to

handle the main tasks of a modern OS

● Provide a useful definition for a real-time system; give examples of actual real-time systems

● Understand how we can apply operating system concepts in industry

Unit

No.
Topics to be Covered

Lecture

Hours
Learning Outcome

1

Introduction, Categories of Operating

Systems, Computer System Architecture,

Interrupts, Storage Structure, Hardware

Protection; OS Structures: OS Components;

4 Recognize and give examples of conflicting

goals and compromises necessary in

implementing an OS and configuring its run-

time parameters

2

System Calls, System Structures, Virtual

Machines, System Design Goal, SYSGEN

4 know and identify (from content description or

C code), the most common data structures

required in an OS implementation

3

Process Management: Process Concept,

Process Sate, PCB, Process Scheduling,

Schedulers, Process Creation, Process

Termination, Co-operating Process, Producer

Consumer Problem, Inter-process

Communication, Client Server

Communication, Threads, Process

Synchronization, Critical Section Problem,

Bakery Algorithms, Semaphores, Reader’s

Writer’s Problem, Dining Philosopher’s

Problem;

5 Remember the most elementary challenges in

concurrent programming (i.e., situations

requiring mutual exclusion and

synchronization) and solve them using

semaphores (as defined by the POSIX threading

interface).

verify whether a given C (or similar

pseudocode) program correctly solves the

producer-consumer problem using multi-valued

semaphores

4

CPU Scheduling: CPU Scheduler, Scheduling

Criteria, Scheduling Algorithms: FCFS, SJF,

Priority Scheduling, Round Robin

Scheduling, Multilevel Queue Scheduling,

Multilevel Feedback Queue Scheduling;

6 List and explain simple scheduling algorithms

and give examples of applications in which each

scheduler could be more beneficial than the

others; likewise, choose the most suitable

scheduling algorithm from a number of given

choices, given an application scenario

5

Deadlock: Introduction, Deadlock

Prevention, Deadlock Avoidance, Resource

Allocation Graph Algorithms, Deadlock

Detection, Prevention and Recovery;

6 Provide a concrete example (in C or in some

pseudocode) of code that can lead to deadlock

or data corruption due to a race; likewise, the

student is able to tell whether a given code

example (in C or similar pseudocode) has a bug

that makes deadlock or data corruption likely to

occur

6

Memory Management: Memory Hierarchy,

Memory Types, Main Memory Architecture,

Cache Memory, Address Binding, Dynamic

Loading, Linking, Overlays, Logical vs

Physical Addresses, Swapping, Contiguous

Memory allocation, Fragmentation,

Segmentation;

7 Know what the principle of locality stands for,

how it is used in a typical memory system, and

how the principle can be used in applications

other than computer technology and OSs.

translate a virtual memory address into a

physical address, given a page table (of a given

simple "toy" computer with very tiny address

space); understand and explain how a shared

memory area can be implemented using VM

addresses in different processes

A
PPE

N
D

IX
 - X

II

7

Virtual Memory, Paging, Demand Paging,

Page Replacement Algorithms, Thrashing;

5 Describe how the page fault exception is

handled when the reason for fault is a reference

to an existing but swapped-out page, and the

LRU page replacement algorithm is selected

8

Secondary Storage Structure: Disk Structure,

Disk Scheduling, Disk Management; Case

study: Unix and DOS;

5 Understand and explain how a shared memory

area can be implemented using VM addresses in

different processes

Text Books:

1. Abraham Silberschatz, Peter B. Galvin, Greg Gagne, Operating System Concepts, 9th Edition, Wiley Global

Education, 2012.

Reference Books:

William Stallings, Operating Systems: Internals and Design Principles, GOAL Series, Pearson international edition, 2009.

A
PPE

N
D

IX
 - X

II

