Course Type	Course Code	Name of Course		T	P	Credit
DC8	CSC301	Database Management Systems	3	0	0	9

Course Objective

The objective of the course is to present an introduction to database management systems, with an emphasis on how to organize, maintain and retrieve - efficiently, and effectively - information from a DBMS.

Learning Outcomes

Upon successful completion of this course, students will:

- have a broad understanding of database concepts and database management system software.
- have a high-level understanding of major DBMS components and their function.
- be able to model an application's data requirements using conceptual modeling tools like ER diagrams and design database schemas based on the conceptual model.
- be able to write SQL commands to create tables and indexes, insert/update/delete data, and query data in a relational DBMS.

Unit No.	Topics to be Covered	Lecture Hours	Learning Outcome
1	Introduction: Introduction and Overview of a DBMS – Purpose of Database Systems, View of Data, Data Models, DDL, DML, Transaction Management, Storage Management, Database Administrator, Database Users, Overall System Structure.	5	Understanding of DBMS and what it provides. You know when to use files and when to use a DBMS. It provides idea of DBMS Architecture.
2	Entity-Relationship Model: Basic Concepts, Design Issues, Mapping Constraints, Keys, ER- Diagram, Weak Entity Sets, Extended ER- Diagram, Reduction of ER-Schema to Tables Relational Model.	5	This unit will help students in understanding the steps to prepare a data model based on user requirements.
3	Concepts: Structure of Relational Databases, Relational Algebra, Tuple Relational Calculus, Domain Relational Calculus, Extended Relational- Algebra Operations, Modification of the Database, Views.	6	This will help is designing the relation model, which will conceptualize data using the relational model. You can also express queries using relational algebra.
4	Structured Query Language	5	You can express queries using SQL.
5	Integrity Constraints: Domain Constraints, Referential Integrity, Assertions, Triggers, Functional Dependencies.	5	To understand what constraints and triggers are for and how to use them.
6	Relational Database Design: Decomposition, Normalization, Transactions.	4	This will help student in further refining the relational database for efficient management & outcome.
7	Concurrency Control: Transaction Concepts, Transaction State, Concurrent Executions, Serializability, Recoverability, Lock-Based Protocols, Timestamp-Based Protocols, Deadlock Handling Basics of Database.	5	To know all about the transactions and handling concurrent transactions in databases.
8	File Organization & Query Processing: File Organization, Organization of Records in Files, Data Dictionary Storage, Steps in Query Processing.	3	Help in understanding the organization of files for keeping databases and how to optimize the database queries for fast response.

Text Books:

1. Korth, Slberchatz, Sudarshan, :"Database SystemConcepts", 6th Edition, McGraw -Hill

Reference Books:

- 1. Elmasri and Navathe, "Fundamentals of Database Systems", 5thEdition, PEARSON Education.
- 2. Peter Rob and Carlos Coronel, "Database Systems Design, Implementation and Management", Thomson Learning, 5th Edition.
- 3. Raghu Ramkrishnan and Johannes Gehrke, "Database Management Systems", TMH.