

Course

Type

Course

Code
Name of Course L T P Credit

DC9 CSC302 Compiler Design 3 0 0 9

Course Objective

The main objective of this course is to make the students understand various phases of a compiler with the associated

techniques and algorithms to impart knowledge about designing a new compiler.

Learning Outcomes

Upon successful completion of this course, students will:

● Have a broad understanding of language translator and their need.

● Have a detailed understanding of various phases of a compiler and their design techniques.

● Be able to design a complier for new high level language.

Unit

No.
Topics to be Covered

Lecture

Hours
Learning Outcome

1

Introduction: Need of compilers; Introduction

to phases of compilers, Cousins of compilers;

Compiler writing tools, compiler phases.

2

To Introduce with language translators, their

need and various phases of a compiler.

2

Lexical analysis: Transition diagrams,

Tokens, regular expressions, Finite automata

and its use, Implementation of a lexical

analyzer.

5

To familiarize with various elements of a lexical

analyser and to design it using transition diagram

or finite automata.

3

Syntactic Specification of Programming

Languages: Parse trees, Ambiguity, Regular

expressions vs. Context free grammars

(CFGs).

2

To learn about string derivation, parse tree

representation and ambiguity in CFGs.

4

Basic Parsing Techniques: Shift reduce

parsing, operator precedence parsing,

Predictive parsing, Top down parsing.

6

To understand various parsing techniques, basic

as well as advanced level and to design them.

5

Advanced Parsing Techniques: LR parsers

(SLR, LALR, LR) and their design, Use of

ambiguous grammars.

5

To impart knowledge of designing various LR

parsers.

6

Syntax Directed Translation (SDT): Scheme,

Implementation of SDT, Intermediate code,

postfix notation, SDT to postfix code; Parse

trees vs. Syntax trees, Three address code,

SDT for assignment statement and Boolean

expressions.

6

To impart knowledge of intermediate code

generator and several syntax directed translation

schemes.

7

Error Detection and Recovery: Lexical-phase

errors, Syntactic-phase errors. Error detection

and recovery from operator precedence, LR

and Predictive parsing.

4

To familiarize with various kinds of compiler

errors and to learn design of a error handler.

8

Code optimization: Sources, loops in flow

graphs, loop optimization, Loop jamming and

Loop Unrolling, DAG representation of basic

blocks, Use of DAGs for code optimization.

5

To understand importance of code optimization

and to learn various code optimization

techniques.

9

Code generation: Issues, target machine,

runtime storage management, basic block and

flow graphs, a simple code generator,

peephole optimization, code generation

algorithm.

7

To learn about the components of code

generation, flow graph, code generation

algorithm.

Text Books:

1. Aho, Ullman, Sethi, Compiler Principles, Techniques and Tools, Addison-Wesley, 2004.

Reference Books:

1. Alfred Aho and Jeffrey Ullman, Principles of Compiler Design, Narosa, 2002.

2. Dave, Parag H., Dave, Himanshu B, Dave, Compilers: Principles and Practice, Pearson Education India, 2012.

A
PPE

N
D

IX
 - X

II

