Course Type	Course Code	Name of Course	L	Т	Р	Credit
DC	ECC208	Control Systems	3	0	0	9

Course Objective

To develop an understanding of the basic principles of control theory so that the students can determine the degree of stability of a system and from the design specifications, student should be able to design a controllable and stable system.

Learning Outcomes

Upon successful completion of this course, students will:

- have a broad understanding of the basic principles of control theory.
- Be able to determine the degree of stability of a system.
- be able to design a controllable and stable system from the design specifications.

Unit No.	Topics to be Covered	Lecture Hours	Learning Outcome
1	Introduction: Introduction to control problem. Industrial control examples. Transfer function models of various systems. Potentiometers, Servomotors, Tachogenerators. Case study.	7	This unit will introduce the concept of a control problem with the help of several real life examples.
2	Closed-loop control systems. Block diagram and Signal flow graph analysis. Concept of states. State-space modelling of general systems. Case study	7	This unit will help student in understanding the methods to simplify complex feedback control systems and modelling the systems using state-space approach.
3	Basic characteristics of feedback control systems: stability, steady-state accuracy, transient accuracy, disturbance rejection, insensitivity and robustness. Time response. Steady-state errors and error constants. Performance specifications in time-domain. Case study	7	This unit will help in determining various characteristics of control systems like steady state error, time response specifications etc.
4	Concepts of stability and Routh stability criterion. Root locus technique, Cascade and Feedback compensation. Nyquist stability criterion. Frequency response analysis: Polar plot, Nyquist plot, Bode plot, Performance specifications in frequency-domain. Frequency-domain methods of design: Lead, Lag and Lag-lead compensation. Case study.	14	This unit will help in understanding the stability of control systems using various approaches.
5	Basic modes of feedback control: proportional, integral, derivative. Hardware implementation of P, PI and PID controllers. Overview of computer controlled systems. Case study	7	This unit introduces the student to various modes of feedback control and briefly gives an overview of computer controlled modern control systems.

Text book:

1. Nagrath I. J. and Gopal M., "Control Systems Engineering", New Age International (P) Ltd, 6th Edition, 2018.

Reference books:

- 1. Nise Norman S., " Control Systems Engineering", Wiley, 6th Edition, 2011.
- 2. Ogata K, "Modern Control Engineering", Pearson, 5th Edition, 2015.
- 3. Golnaraghi F., Benjamin C. Kuo, "Automatic Control Systems", McGraw Hill, 10th Edition, 2017.
- 4. Dorf, R. C., and R. H. Bishop, "Modern Control Systems," 9th ed., Prentice Hall, 2001.
- 5. Rohrs, C. E., J. L. Melsa, and D. G. Schultz, "Linear Control Systems," McGraw-Hill, 1993.
- 6. Antsaklis, P. J., and A. N. Michel, "Linear Systems," McGraw-Hill, 1997.