Course Type	Course Code	Name of Course	L	т	Ρ	Credit
DE	ECD407	Embedded Systems	3	0	0	9

Course Objective

To impart knowledge on the following topics

- Understand the concepts of embedded system design and analysis
- Learn the architecture and programming of ARM processor
- Be exposed to the basic concepts of embedded programming
- Learn the real time operating systems

Learning Outcomes

- Describe the architecture and programming of ARM processor
- Outline the concepts of embedded systems
- Explain the basic concepts of real time operating system design
- Model real-time applications using embedded-system concepts

Unit No.	Topics to be Covered	Lecture Hours	Learning Outcome
1	Module 1: INTRODUCTION TO EMBEDDED SYSTEM DESIGN Complex systems and microprocessors— Embedded system design process—Design example: Model train controller- Design methodologies- Design flows - Requirement Analysis — Specifications-System analysis and architecture design — Quality Assurance techniques - Designing with computing platforms — consumer electronics architecture — platform- level performance analysis.	09	To understand the basic concept of embedded systems
2	Module 2: ARM PROCESSOR AND PERIPHERALS ARM Architecture Versions – ARM Architecture – Instruction Set – Stacks and Subroutines – Features of the LPC 214X Family – Peripherals – The Timer Unit – Pulse	08	To get a profound knowledge on arm processor and its peripherals
3	Module 3: EMBEDDED PROGRAMMING Components for embedded programs- Models of programs- Assembly, linking and loading – compilation techniques- Program level performance analysis – Software performance optimization – Program level energy and power analysis and optimization – Analysis and optimization of program size- Program validation and testing.	08	To get a profound knowledge in programming in the embedded processors
4	Module 4: REAL TIME SYSTEMS Structure of a Real Time System — Estimating program run times – Task Assignment and Scheduling – Fault Tolerance Techniques – Reliability, Evaluation – Clock Synchronisation.	08	To understand the concept and working of real time systems
5	Module 5: PROCESSES & OPERATING SYSTEMS Introduction – Multiple tasks and multiple processes – Multirate systems- Preemptive real-time operating systems- Priority based scheduling- Interprocess communication mechanisms – Evaluating operating system performance- power optimization strategies for processes – Example Real time operating systems-POSIX-Windows CE Distributed embedded systems – MPSoCs and shared memory multiprocessors. – Design Example - Audio player, Engine control unit – Video accelerator.	09	Capable of handling multi tasks and multi process systems To understand the concept of real time operating systems

Text Books:

- 1. Marilyn Wolf, —Computers as Components Principles of Embedded Computing System Designl, Third Edition —Morgan Kaufmann Publisher (An imprint from Elsevier), 2012.
- 2. Jane W.S.Liu, Real Time Systemsl, Pearson Education, Third Indian Reprint, 2003.

References:

- 1. Lyla B.Das, -Embedded Systems: An Integrated Approach, Pearson Education, 2013.
- 2. Jonathan W.Valvano, —Embedded Microcomputer Systems Real Time Interfacing, Third Edition Cengage Learning, 2012.
- David. E. Simon, —An Embedded Software Primer, 1st Edition, Fifth Impression, Addison-Wesley Professional, 2007.
- 4. Raymond J.A. Buhr, Donald L.Bailey, —An Introduction to Real-Time Systems- From Design to Networking with C/C++, Prentice Hall, 1999.
- 5. C.M. Krishna, Kang G. Shin, —Real-Time Systems, International Editions, Mc Graw Hill 1997
- 6. K.V.K.K.Prasad, —Embedded Real-Time Systems: Concepts, Design & Programming, Dream Tech Press, 2005.
- 7. Sriram V Iyer, Pankaj Gupta, -Embedded Real Time Systems Programming, Tata Mc Graw Hill, 2004.