Course Type	Course Code	Name of the Course	L	Т	Р	Credits
DP	EEC377	Power and Switchgear Lab.	0	0	2	2

Course Objective

The objective of this lab is to introduce undergraduate students to the basic practical aspects of power system and switch gear.

Learning Outcomes

Upon successful completion of this course, students will develop:

- an idea about the working of advanced power systems.
- an idea about the switchgear and protection components in power system.

Unit No.	Topics to be Covered	Laboratory Hours	Learning Outcome
1	Experiments on power transfer techniques	2x2	Students will learn different power transfer techniques through transmission lines
2	Experiments on power system faults	2x2	Students will learn different types of faults in power system
3	Experiments on over current relays	2x2	Students will learn different types of over current relay
4	Experiments on numerical relays	2x2	Students will learn different types of numerical relays
5	Experiments on distance relay	2x2	Students will learn different types of distance relay

Text Books

- 1. Power System Analysis by J. J. Grainger and Wolliam D. Stevenson
- 2. Power System Engineering by D. P. Kothari and I. J. Nagrath
- 3. Electrical Power Systems by C. L. Wadhwa

Reference Books

1. Electric Energy Systems Theory by O. J. Elgard