FINE PARTICLE PROCESSING FOR COAL AND MINERALS

	Course Type	Course Code	Name of the course		Т	Р	Credits
Ī	DC	FMC207	Fine Particle Processing for Coal and Minerals	3	1	0	10

	Course Objective					
To give idea of various mineral processing techniques at fine particle size and idea of dewatering technology						
	Learning Outcomes					
	Upon successful completion of this course, students will:					
	• be able to acquire the knowledge about the processing of particles at fine size range.					

be able to dewater the wet materials generated from mineral processing plants. •

Unit No.	Topics to be Covered	Lecture Hours	Learning Outcome
1.	Introduction: Fundamentals of fine particle processing.	2	Understanding of basic approach for selection of process based on the properties of material.
2.	Froth Flotation: Flotation theory, flotation reagents, laboratory flotation tests. Types of flotation: emulsion flotation, carrier flotation, selective flotation, floc-flotation, skin flotation, reverse flotation, electro flotation. Flotation machine features and functions. Design, selection and sizing. Conventional and modern flotation machines - Column flotation, Jameson Cell etc.	15	This unit will help student in understanding the beneficiation of fine particles based on the surface properties.
3.	Oil agglomeration: Principles, process equipment, practices, reagents and application	4	This will help students in selecting the process and equipment related to oil agglomeration process.
4.	Fluidization: Principles, process equipment and practices Applications of fluidisation	4	This will enable students to select process related to fluidization for the processing of fines.
5.	Flocculation and selective flocculation: Principles, process equipment, practices, reagents, and their selection	4	This will help students to understand the behaviour of particles in liquid to define the process of dewatering and selective flocculation.
6.	Thickening and filtration: Thickening fundamentals, basic machine features, different types of thickeners – conventional thickener, high-rate thickener, lamella thickener, deep cone thickener, paste thickening technology etc. Filtration principles, constant rate and constant pressure filtration, filters – vacuum drum filter, vacuum disc filter, filter press, horizontal belt filter. Design, selection and sizing of thickeners and filters	9	This will help student to understand the separation of liquid from slurry i.e. dewatering related processes.
7.	Drying: Principles and methods	4	Knowledge of the principles and practice of industrial drying`
	Total	42	

Text Books:

Gupta, Ashok, and Denis S. Yan. Mineral processing design and operations: an introduction. Elsevier, 2016. 1. **Reference Books:**

- Kelly, E. G., & Spottiswood, D. J. (1982). Introduction to mineral processing. 1.
- Gaudin, Antoine Marc. "Principles of mineral dressing." (No Title) (1939). 2.
- McCabe, Warren L., Julian C. Smith, and Peter Harriott. Unit operations of chemical engineering. McGraw-hill, 1993. 3.
- Maloney, James O. Perry Chemical Engineers Handbook. The McGraw-Hill Companies, Inc, 2008. 4.
- Svarovsky, Ladislav. Solid-liquid separation. Elsevier, 2000. 5.