APPENDIX - VIII

PARTICLE TECHNOLOGY

T	Correct	PARTICLE TECHNOLOG	J I		т	T	D	C	
TYPE ESO	COURSE CODE FME221	NAME OF THE COURSE			L 3	T 0	P 0	CREDI 9	Т
E30	FIME221	Particle Technology COURSE OBJECTIVE			3	0	0	9	_
The obj	ective of the course	is to learn about the fundamentals of particle cha	racterisation	commin	utior	and	classi	fication a	nd
		different technologies used, with focus on the							
	ance optimization	5	1 1				, I		
	*	LEARNING OUTCOMES							
Upon su		n of this course, students will have out the sampling principles and methods as requi	red for vario	ıs analys	es				
•	-	the various properties of particles and their chara		5					
•		of the importance and application of comminuti		fication o	mera	tions	in inc	lustry	
•		about the underlying principles and phenomena							ion
	units used in the in							- s-paran	
•		the construction, operation, application and perfo	ormance enha	incement	ofir	dusti	ial si	ze reducti	ion
	and size separation								
•	-	about the performance analysis methodologie	s and mass	and wat	er h	alanc	ing c	of industr	ial
	comminution-clas		s und muss	und wu		uiuiie	ing (i maasu	Iui
No.		TOPICS TO BE COVERED	Hours	I	FAD	NINC	OUT	СОМЕ	
1	Introduction: D	efinition of mineral, rock, ore, gangue, tenor.	3	Familia					the
-		conceptual flow diagram to represents sequence	_	fundan			of	mine	
	of material in pla	ants. Particle properties and their relevance to		engine	ering				
-	mineral processin								
2		nition, need, methods of sampling (solids and	3					nciples a	
		w of sampling, estimation of minimum amount d, BIS standard for sampling, accurate sampling						ed for t liquid a	
	of solids and slur			slurry s			Jiiu,	liquiu a	.nu
3		d size distribution: Geometrical diameters,	4				e cor	cept of si	ize
		ived diameters, statistical diameters to designate						tions and	
		egular particles, in sieve and sub-sieve sizes, and						applied t	
		ent techniques Particle size distribution and						presentati	
		fferent methodologies		and distribi		preta	tion	of si	ize
		functions: Gaudin-Schumann, RosinRammler, Broadbent and Calcott		distribu	luon	uata			
4		nd shape measurement: Direct and indirect	2	Knowl	edge	ofthe	e vario	ous metho	ods
		ability, gas adsorption, Volume and porosity						urements	
	measurements, B	ulk solids properties – bulk density, true density.						of partic	les
	D			and oth			<u> </u>		
5		luction: Fundamentals of size reduction, modes inution laws, drop shatter tests and shatter index,	3	scope	and: an	-		e meanir rtance	ng, of
		breakage and packed bed breakage; basic						chanism	
	0 1	hing and grinding. grindability indices						owledge	
								ial testi	
				technic					
6		truction & operational features of different	7					he differe	
		es, forces of breakage; design, operation and jaw, gyratory, cone, single and double roll		crushir industr		uipn thei		used in to onstruction	
		hammer mills, ring granulators and rotary		operati	-		rits,	demeri	
		mpression rolls. performance aspects. in-pit and						paramete	
	portable crushers							analysis	
7		iples, construction & operational features of	7	Familia	arisat	ion v	vith t	he differe	
		ll, rod, pebble, autogenous, sag and fluid energy						l techniqu	
		n power plants and cement industry; mill liners;		used cement				power a	und leir
		oduct discharge mechanisms; open- and closed- pplication of mills; effect of process parameters					istrie perati	s, th on, meri	
	on mill performat							itional a	
	p -rrormun			design				u	
8		ning: Need and importance of size separation,	5	Unders	stand	ing tl	ne pri	nciples a	
	fundamentals of	industrial screening; dry and wet screening;		mechai	nism,	nee	d an	d scope	of
		creens; different types of industrial screens. pre-						edge abo	
		her processes to improve screening efficiency.						f industr	
	Screen performa performa	ance measurement, factors affecting screen		screens		their		pplication	
	performance.							i, importa ce analysi	
	1		1	1001015	unu	22110		ee anarysi	.0

9	Classification: Settling of solids in fluids, settling velocities for Stokesian and Newtonian conditions, Reynolds number and its		Understanding the principles of classification in fluids and
	application, settling ratios. Different types of classifiers used in mineral industry: Hydrocyclones, Mechanical Classifiers,		familiarisation with the different industrial classifiers, their
	Efficiency of classifiers; Solids and water balance calculations.		construction, operation, important factors, performance analysis and circuit balancing
	Total	42	Lecture

TEXT BOOKS									
No.	Resource/Book Name	AUTHOR(S)/EDITOR(S)	PUBLISHER						
1	Wills' Mineral Processing Technology	Barry A. Wills James Finch	Butterworth-Heinemann						
2	Introduction to Mineral Processing	Errol G. Kelly, David J.	John Wiley and Sons						
		Spottiswood							
3	Introduction to Particle Technology	M. Rhodes	John Wiley & Sons Ltd.						
	REFERENCE BOOKS								
No.	Resource/Book Name	AUTHOR(S)/EDITOR(S)	PUBLISHER						
1	Mineral Processing Design and Operation: An	A. Gupta and D.S. Yan	Elsevier						
	Introduction								
2	Mineral Processing Plant Design	Andrew L. Mular, Roshan Boman	Society of Mining Engineers						
		Bhappu	(AIME)						