Cours Type	se Course Code	Name of Course		L	т	Ρ	Credit			
DP3	MCC302	GPU Computing Lab		0	0	2	2			
Course	Course Objective									
Objective: To learn GPU computing with CUDA C/C++, PyCUDA and OpenACC										
Learning Outcomes										
Upon successful completion of this course, students will be able:										
•	 to write programs for High Performance Computing (HPC) to optimize CUDA Programs in terms of speed to apply GPU computing in various Parallel patterns and Convolution Neural Networks 									
Unit No.	Торі	cs to be Covered	Lecture Hours	e	Learning Outcome					
1	Programs -Hello world, a Kernel Call and Passing Parameters, Check Device Information			To pro	To learn basic CUDA program structure					
2	Display grid and block structure, Vector Addition on GPU			То	To learn tread organization					
3	Matrix-Matrix Multiplication on GPU			To mu	To learn Matrix-Matrix multiplication in CUDA					
4	Distance Kernel and Matrix Multiplicatio	d Header Kernel, Tiled Matrix- n		To alg	To understand tiled algorithm					
5	Implementation of algorithm	warp divergence and reduction	2	To div ker	To understand warp divergence and reduction kernel					
6	Numerical accuracy of fusing a multiply-add, Floating-point's inability		2	To pre	To know single and double precision computation					
7	Single and multi streams CUDA program with the use of paged-locked memory and asynchronous data transfer		2	To stre	To know basics of CUDA streams					

8	CUDA programme for 1D/2D Parallel and Tiled Convolutions	2	To understand implementation of Convolution Operation
9	CUDA Implementation of Convolution Neural Networks	2	To learn CNN implementation
10	Reduction of Convolution Layer to Matrix Multiplication, Parallel histogram computation, merge sort	2	To learn other parallel patterns
11	Simple PyCUDA program , Device Information, Matrix-Matrix Multiplication in PyCUDA,	2	To learn basics of PyCUDA program structure
12	Kernel Invocation with GPUArray, Evaluating elementwise expressions with PyCUDA with NumbaPro	2	To understand GPUArray and Elements-wise expressions
13	Jacobi iterative method to solve Laplace equation for heat transfer with OpenACC kernels and parallel directives. Program for OpenACC routine directive with CUDA device kernel and calling CUDA device kernel from OpenACC	2	To learn OpenACC program structure, OpenACC kernel and parallel directives
14	LAB Exam	2	
	Total	28	

Text Books

- David B. Kirk: Programming Massively Parallel Processors: A Hands-on Approach, Wen-mei W. Hwu, Elsevier, 2016
- 2. Dr. Brian Tuomanen:Hands-On GPU Programming with Python and CUDA: Explore highperformance parallel computing with CUDA, Packt Publishing Ltd, 2018

Reference Books

- 1. John Cheng, Max Grossman, Ty McKercher: Professional CUDA C Programming, John Wiley & Sons, 2014
- 2. Jason Sanders:CUDA by Example: An Introduction to General-Purpose GPU Programming, Edward Kandrot, publisher Addison-Wesley Professional, 2010