Course Type	Course Code	Name of Course	L	т	Ρ	Credit
DE	MCD401	Computer Graphics	3	0	0	3

Course Objective

Objective: The objective of the course is to present an introduction to Computer Graphics, with an emphasis on how to develop realistic graphics model including games

Learning Outcomes

Upon successful completion of this course, students will:

- Upon successful completion of this course, students will:
- Have a broad understanding of Computer Graphics
- Programming of Graphics Models

Unit No.	Topics to be Covered	Lecture Hours	Learning Outcome	
1	Graphics hardware and display devices;	2	Under standing graphics hardware and display devices;	
2	Graphics primitives- drawing lines and curves;	5	Learn graphics primitives- drawing algorithms	
3	2d and 3d transformations; segments and their applications;	6	Help to understand 2D/3D transformations and geometric projections	
4	Generating curves, surfaces and volumes in 3d, wire-frame models, Bezier and spline curves and surfaces;	6	This will help design various objects using Cubic Spline, Bezier and spline curves and surfaces;	
5	Geometric modeling- elementary geometric algorithms for polygons, boundary representations, constructive solid geometry, spatial data structures;	6	To understand elementary modeling, constructive solid geometry and spatial data structures;	
6	Hidden surface and line elimination;	6	To understand how to remove hidden surfaces	

7	Rendering- shading, light models, realistic image synthesis techniques,	5	This will help student in designing more realistic models using shading and liting
8	Textures and image based rendering; video games and computer animation.	6	To understand textures based rendering, animation and how to develop a video game using OpenGL

Text Books:

- Procedural Elements for Computer Graphics, by David Rogers, Tata McGraw-Hill, 2012
- Mathematical Elements for Computer Graphics, by David F. Rogers and J. Alam Adams, 2nd Ed. Tata McGraw-Hill, 2011

Reference Books:

- Computer Graphics Through OpenGL: From Theory to experiments, 2nd Ed. By Sumanta Guha, CRC Press, Taylor & Francis Group, 2014
- 2. Computer Graphics with OpenGL, by Donald D. Hearn, M. Pauline Baker and Warren Carithers, Pearson 2011