Course Type	Course Code	Name of Course	L	Т	Р	Credit
DC	MEC 303	Advanced Solid Mechanics	3	0	0	9

Course Objective

To solve problems in solid mechanics which cannot be satisfactorily addressed by the approaches of mechanics of materials. Examples of such problems include plane stress and strain problems, semi-inverse problem solution, fracture problems, plasticity, and problems in which some input or system parameters are uncertain.

Learning Outcomes

Students completing this course should be able to:

• formulate and understand the differential equations governing the behavior of two dimensional elastic solids,

• solve the differential equations governing the bending of beam,

• apply concepts of energy conservation to the solution of problems in solid mechanics,

• determine whether a solid will exceed the elastic limit and analyze the post-yield behavior

Unit No.	Topics to be Covered	Lecture Hours	Learning Outcome
1	Continuum concept of stress and strain fields. Generalized Hook's law, equilibrium equation and compatibility conditions. 3-D Mohr's circle representations for stress and strain. Concept of	12	One would have learnt the continuum concept of "stress" and "strain" in addition to revisiting the concept of a "force" and
2	Stresses in a thick cylinder, compound cylinder and a rotating disk.	7	Formulate and understand the differential equations for the stress analysis in a cylinder and disk.
3	Concept and application of energy methods. Unsymmetrical bending of beams, Shear center, shear flow in thin members.	7	Knowledge the concept of energy conversion for solving the solid mechanics problem
4	Failure, yield and fracture, Elements of fracture mechanics.	6	Basic knowledge of failure and fracture analysis of engineering materials
5	Plasticity: yield criteria, hardening rules, flow rules, cyclic loading.	6	Understanding the materials behavior beyond elastic limit.
6	Plastic analysis of beams.	4	Understanding the behavior of beam when plastically deformed.

Text Books:

1. Ugural and Fenster, Advanced Strength and Applied Elasticity. 4th ed. Prentice Hall, 2003.

Reference Books:

- 1. L.S. Srinath, Advanced Solid Mechanics, Tata McGraw Hill Publication
- 2. Arthur P. Boresi and Richard J. Schmidt, Advanced Mechanics of Materials, 6th edition, Wiley, 2009.