Course Type	Course Code	Name of Course		T	P	Credit
DP 6	MEC 305	Machine design Lab	0	0	3	3

Course Objective

• The objective of this course is to develop an ability to design a machine component commonly found in mechanical devices and systems.

Learning Outcomes

After completing the course, students will be able to

- use readily available materials, processes and appropriate design approaches to achieve a safe, efficient design.
- execute original designs for machine elements and integrate the elements into a system composed of several elements.
- work professionally in the machine design area.

Module	Topics	Laboratory	Learning Outcome
	Design of shaft	1	Ability to propose reasonable geometries for shafts to
1			carry a variety of types of power-transmitting elements,
			providing for the secure location of each element
	D : C ::1	1	and the reliable transmission of power.
2	Design of a rigid coupling	1	Ability to design rigid coupling for power transmission
3	Design of a flexible coupling	1	Ability to design flexible coupling for torque transmission
	Design of helical	1	Ability to design helical compression springs to
4	spring		conform to design requirements such as force/deflection
'			characteristics, life, physical size, and environmental
			conditions.
5	Design of leaf spring	1	Ability to design leaf spring defining the geometry of
			leaves.
6	Design of brake	1	Ability to determine the minimum required actuating
	D 1 01 1		force, and friction torque for the proposed brake package.
7	Design of clutch	1	Ability to design plate clutch to drive a system.
	Design of journal	1	Ability to design full-film bearings, defining the
8	bearing		size of the journal and bearing, the diametral clearance,
			the bearing length, the minimum film thickness,
			the surface finish, the lubricant, and the resulting
	Selection of rolling	1	frictional performance of the bearing system.
9	element bearing	1	Ability to select type and specification of the rolling bearing from the manufacturer's catalogue for a given
9	element bearing		application
10	Design of spur gear	1	Ability to complete the design of the gears (Spur, Helical,
			and Bevel), taking into consideration both the stress
11	Design of helical gear	1	analysis and the analysis of pitting resistance. The result
			will be a complete specification of the gear geometry, the
12	Design of bevel gear	1	material for the gear, and the heat treatment of the
			material.
13	Evaluation	1	Evaluating the understanding of the course by the
1.5			students.

Text Books:

1. Machine Design Databook, K Lingaiah

Reference Books:

- 1. Mechanical Engineering Design, J. E. Shigley, Mischkee& R. Charles
- 2. Design of Machine Elements, M. F. Spotts& T. E. Shamp.
- 3. Machine Design, Robert L. Norton.
- 4. Machine component Design, R C Juvinall, Kurt M. Marshek
- 5. Relevant Indian Standards