Course Type	Course Code	Name of Course	L	T	P	Credit
DE2	PED402	Enhanced Oil Recovery Techniques	3	0	0	9

Course Objective

The objective of the course is to provide the basic knowledge of enhanced oil recovery systems.

Learning Outcomes

Upon successful completion of this course, students will:

Have the ability to select and apply the compatible EIOR method to a particular oil field.

Have the ability to monitor the progress of the production of oil.

Unit No.	Topics to be Covered	Lecture Hours	Learning Outcome
1	Historical background and review of primary and secondary recovery, injection rates & pressures in secondary recovery. Flood patterns and coverage.	<mark>6</mark>	Strong knowledge base of primary and secondary recovery techniques.
2	Microscopic displacement of fluids in a reservoir: Capillary forces, viscous forces, phase trapping, mobilization of trapped phases.	<mark>5</mark>	Knowledge of the fundamentals on various microscopic forces acting during oil recovery.
3	Macroscopic displacement of fluids in a reservoir: Areal sweep efficiency, vertical sweep efficiency, displacement efficiency, mobility ratio, well spacing.	<mark>5</mark>	Knowledge of the fundamentals on various macroscopic effects during oil recovery, ex. various sweeps.
4	Chemical flooding: Polymer flooding and mobility control processes, micellar/ polymer flooding, phase behavior of micro-emulsions, phase behavior and IFT, wettability alterations, alkali flooding.	<mark>6</mark>	Knowledge of the fundamentals of chemical flooding, alkali and polymer flooding, with the emphasis on the phase behavior and IFT of the fluids and wettability alterations of the porous medium.
5	Miscible displacement processes: Mechanism of miscible displacement, phase behavior related to miscibility, high pressure gas injection, enriched gas injection, LPG flooding, carbon dioxide flooding, alcohol flooding.	<mark>7</mark>	Knowledge of the fundamentals of miscible flooding, i.e. phase behavior related to miscibility, high pressure and enriched gas injection, LPG, CO ₂ and alcohol injection
6	Thermal recovery processes: Mechanism of thermal flooding, hot water flooding, cyclic steam injection, estimation of oil recovery from steam drive, in-situ combustion, air requirement for in-situ combustion.	6	Knowledge of the fundamentals and mechanism of thermal flooding which includes hot water, steam, and in-situ combustion drives.
7	Microbial oil recovery.	4	Fundamentals of MEOR mechanism, operation and types of microbes used in the process.
8	EOR project evaluation.	3	Ability to evaluate an EOR project.
	Total contact hours:	<mark>42</mark>	

Text Books:

- 1. Smith C.B.-"Mechanics of Secondary Oil Recovery"
- 2. Lake, L.W., "Enhanced Oil Recovery"
- 3. Chilinger, "Enhanced Oil Recovery", Vol. I & II

References:

- 1. Craig F.F., "The Reservoir Engineering Aspects of Water Flooding"
- 2. Cosse, R., "Basics of Reservoir Engineering"
- 3. Van Poollen H.K., "Fundamental of Enhance oil recovery" Petroleum Production Systems, Economides et al., Prentice Hall, 2012