
1

Department of Computer Science & Engineering
Course: Compiler Design Lab., Course Code: CSC304

Location: NLHC Lab

List of Experiments

Experiment

Number

Experiment Title Page

Number

1 Implementation of the combined transition diagram 2

2 Design of a lexical analyzer-I for recognizing a group of tokens 2

3 Identification of the given tokens 3

4 Design of a lexical analyzer-II for recognizing a group of tokens 3

5 Implementation of a flex programme to generate strings 4

6 Generating a table of the precedence functions 4

7 Generating a table of operator precedence functions 5

8 Implementation of predictive parsing 6

9 Checking a given string whether it is a palindrome using YACC 6

10 Implementation of a top-down parsing by recursive procedures 7

11 Design of a shift reduce parser 7

12 Implementation of parsing-I 8

13 Implementation of parsing-II 8

14 Implementation of parsing-III 9

15 Implementation of error-handler routine for SLR parsing 9

16 Implementation of syntax directed translation 10

2

Experiment 1

Objective: To implement a combined transition diagram for recognizing a group of tokens.

Brief Theory: Consider the following group of tokens:

a) Identifiers: Letter followed by any number of letter or digit

b) Keywords: BEGIN, END, IF, THEN, ELSE

c) Integer constants: Digit followed by any number of digit

d) Relational operators: <, <=, =, < >, >, >= that are commonly used in any high level

language.

Task: WAP to implement the combined transition diagram for recognizing the aforesaid group

of tokens.

Apparatus and components required: Computer with C or C++ Compiler and

Linux/Windows operating platform.

Experimental/numerical procedure: Coding, compilation, editing, run and debugging.

Experiment 2

Objective: To design a lexical analyzer for recognizing a group of tokens with the help of flex

tools.

Brief Theory: Consider the following specifications of the tokens:

a) Comments are surrounded by /* and */

b) Blanks between tokens are optional, with the exception that keywords must be

surrounded by blanks and newlines.

c) Identifier: An identifier is a sequence of letters and digits, starting with a letter. The

underscore ‘_’ counts as a letter.

1. letter → [a-z, A-Z]

2. digit → [0-9]

3. id → letter (letter | digit)*

d) Keywords: begin, end, if, then, else, for , do , while, switch, case, default, break,

continue, goto

Task: WAP to design a lexical analyser for recognizing a group of tokens with the help of flex

tools.

Apparatus and components required: Computer with C or C++ Compiler, Flex, Bison

(YACC) and Linux/Windows operating platform.

Experimental/numerical procedure: Coding, compilation, editing, run and debugging.

3

Experiment 3

Objective: To identify token of the given definitions.

Brief Theory: Consider the following definitions:

Special character: “!”, “@”,”#”, “$”,”&”, “*”,”_”

Token1: Special character followed by any number of letter or digit.

Token 2: Digit followed by any number of special character or letter.

Token 3: Start and end with a letter and any number of special character or digit in

between.

Task: Write a flex program to identify token of the definitions above.

Apparatus and components required: Computer with C or C++ Compiler, Flex, Bison

(YACC) and Windows operating platform.

Experimental/numerical procedure: Coding, compilation, editing, run and debugging.

Experiment 4

Objective: To design a lexical analyser for recognizing a group of tokens with the help of flex

tools.

Brief Theory: Consider the following specifications of the tokens:

a) Keywords: else, int, void, if, else, while, return. For each one of them, the lexer shall

return the tokens INT, CHAR, VOID, IF, ELSE, WHILE, RETURN respectively.

b) It recognizes integer numbers. An integer number is a sequence of digits, possibly

starting with a + or -.

c) It recognizes real numbers. A real number is a sequence of digits, possibly starting

with a + or – and / or with . and E notations. For each real number, it shall return the

token REAL.

d) The lexer shall recognize the operators ‘->’, ‘&&’, ‘||’, ‘.’ for which it shall return the

tokens PTR_OP, AND_OP, OR_OP, and DOT_OP respectively.

e) It recognizes operators ‘-’, ‘+’, ‘*’, ‘/’ for which it shall return the same character as

token.

f) It recognizes separators ‘;’, ‘{’, ‘}’, ‘,’, ‘=’, ‘(’, ‘)’, ‘&’, ‘~’, , ‘[‘ and ‘]’ for which it

shall return the same character as token.

Task: WAP to design a lexical analyser for recognizing a group of tokens with the help of flex

tools.

Apparatus and components required: Computer with C or C++ Compiler, Flex, Bison

(YACC) and Linux/Windows operating platform.

Experimental/numerical procedure: Coding, compilation, editing, run and debugging.

4

Experiment 5

Objective: To implement a flex programme to generate strings for the regular expressions.

Brief Theory: Consider the following regular expressions:

a) ((a + b)*(c+d)*)+ + ab*c*d

b) (0 + 1)* + 0*1*

c) (01*2 + 0*2+1)+

Task: Write flex programs for above regular expressions mentioned above.

Apparatus and components required: Computer with C or C++ Compiler, Flex, Bison

(YACC) and Windows operating platform.

Experimental/numerical procedure: Coding, compilation, editing, run and debugging.

Experiment 6

Objective: To generate table of the precedence functions for an operator/operator precedence

grammar.

Brief Theory: Given an operator precedence table, we can generate a table of the precedence

functions. For example, given the operator precedence table

we can generate the following table of the corresponding precedence functions f and g

by creating a directed graph as follows:

5

Task: You are given any operator precedence table. Write a program to generate the

corresponding table of the precedence functions.

Apparatus and components required: Computer with C or C++ Compiler, Flex, Bison

(YACC) and Windows operating platform.

Experimental/numerical procedure: Coding, compilation, editing, run and debugging.

Experiment 7

Objective: Table generation for an operator precedence grammar.

Brief Theory: Consider the following operator grammar:

E → E+E | E-E | E*E | E/E | E↑E | (E) | id

Task: Write a program to generate the table of operator precedence functions for the above

grammar.

Apparatus and components required: Computer with C or C++ Compiler, Flex, Bison

(YACC) and Windows operating platform.

Experimental/numerical procedure: Coding, compilation, editing, run and debugging.

6

Experiment 8

Objective: To implement predictive parsing.

Brief Theory: Consider the following grammars:

1.

E → E + T | T

 T → T * F | F

 F → (E) | id

2.

S → A

 A → aB | Ad

 B → bBC | f

 C → g

Task: Write a program to design a predictive parser for the above grammar using FIRST and

FOLLOW calculations.

Apparatus and components required: Computer with C or C++ Compiler, Flex, Bison

(YACC) and Windows operating platform.

Experimental/numerical procedure: Coding, compilation, editing, run and debugging.

Experiment 9

Objective: To check whether a given string is palindrome or not.

Brief Theory: A sting is palindrome if it is in the form WcWT where WT is the reverse of W

where W is formed from the alphabet ∑= {a, b}.

Task: Write a YACC program to check whether a given string over the alphabet {a, b} is

palindrome or not.

Apparatus and components required: Computer with C or C++ Compiler, Flex, Bison

(YACC) and Windows operating platform.

Experimental/numerical procedure: Coding, compilation, editing, run and debugging.

7

Experiment 10

Objective: To implement a top-down parsing by recursive procedures.

Brief Theory: Consider the following grammars:

Grammar 1: S → Aa | b

 A → Ac | Sd | f

Grammar 2:

S → cAd

A → ab| a

Task: Write two separate programs to implement a top-down parsing by recursive procedures

for the grammar.

Apparatus and components required: Computer with C or C++ Compiler, Flex, Bison

(YACC) and Windows operating platform.

Experimental/numerical procedure: Coding, compilation, editing, run and debugging.

Experiment 11

Objective: Design a shift reduce parser for parsing an arithmetic expression.

Brief Theory: Consider the following grammar:

E → E + E | E – E | E * E | E / E | E ↑ E | (E) | - E | id

Task 1: Write a YACC program to parse an arithmetic expression.

Apparatus and components required: Computer with C or C++ Compiler, Flex, Bison

(YACC) and Windows operating platform.

Experimental/numerical procedure: Coding, compilation, editing, run and debugging.

8

Experiment 12

Objective: To implement parsing a string using yacc.

Brief Theory: Consider the following grammar:

S → Aa | bAc |dc | bda

A → d

Task: Write a YACC program to parse if-then-else statement using the grammar above.

Apparatus and components required: Computer with C or C++ Compiler, Flex, Bison

(YACC) and Windows operating platform.

Experimental/numerical procedure: Coding, compilation, editing, run and debugging.

Experiment 13

Objective: To implement if-then-else grammar.

Brief Theory: Consider the following grammar:

S → iCtS| iCtSeS |a

C →b

Task: Write a YACC program to parse if-then-else statement using the grammar above.

Apparatus and components required: Computer with C or C++ Compiler, Flex, Bison

(YACC) and Windows operating platform.

Experimental/numerical procedure: Coding, compilation, editing, run and debugging.

9

Experiment 14

Objective: To implement an LR parser

Brief Theory: Consider the following grammar:

E → E + T

 E → T

 T → T*F

 T → F

 F → (E)

 F→ id

Task: Write a program to implement an LR parser for the grammar above and test with a

given string.

Apparatus and components required: Computer with C or C++ Compiler and Windows

operating platform.

Experimental/numerical procedure: Coding, compilation, editing, run and debugging.

Experiment 15

Objective: To implement error-handler routine for SLR parsing

Brief Theory: Consider the following grammar:

E → E+E

E→ E*E

E→ (E)

E→ id

Task: Write a program for handling error in SLR parsing of the grammar above.

Apparatus and components required: Computer with C or C++ Compiler, Flex, Bison

(YACC) and Windows operating platform.

Experimental/numerical procedure: Coding, compilation, editing, run and debugging.

10

Experiment 16

Objective: To implement syntax directed translation of infix to postfix conversion

Task: Write a program to implement the syntax directed translation of infix to postfix

conversion with the usual unary and binary operators.

Apparatus and components required: Computer with C or C++ Compiler, and Windows

operating platform.

Experimental/numerical procedure: Coding, compilation, editing, run and debugging.

