

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

LAB MANUAL

 Course Name: Computer Networks Laboratory

Course Code: CSC307

Location: NLHC/ Project Lab

Course objectives:

• Demonstrate operation of network and its management commands

• Simulate and demonstrate different layered protocols.

PART A

1. Write TCL Script for connecting two nodes and sending packets in wired network.

2. Write TCL Script for given STAR topology using SFQ on queue at intermediate node &

use different colors for packet originated from different nodes.

3. Write TCL Script for given RING topology in wired network using For loop & making

topology dynamic.

4. Write TCL Script in wired network for the given topology using TCP connection and sending

data through the node.

5. Write TCL Script in wired network for the given topology using UDP connection and sending

data through node.

6. Implement three nodes point – to – point network with duplex links between them. Set the queue

size, vary the bandwidth and find the number of packets dropped.

7. Implement transmission of ping messages/trace route over a network topology consisting of 6

nodes and find the number of packets dropped due to congestion.

8. Implement an Ethernet LAN using n nodes and set multiple traffic nodes and plot congestion

window for different source / destination.

9. Implement simple ESS and with transmitting nodes in wire-less LAN by simulation and

determine the performance with respect to transmission of packets.

10. Implement and study the performance of GSM on NS2/NS3 (Using MAC layer) or equivalent

Environment.

11. Implement and study the performance of CDMA on NS2/NS3 (Using stack called Call net) or

equivalent environment.

12. Setup File Transfer Protocol (FTP) on Scientech 6205 IoT Builder

13. Setup Constrained Application Protocol(CoAP) on Scientech 6205

14. How to send data on cloud using HTTP in Scientech 2505 IoT Builder

PART B

Implement the following in the Programming language:

15. Write a program for error detecting code using CRC-CCITT (16- bits).

16. Write a program to find the shortest path between vertices using bellman-ford algorithm.

17. Using TCP/IP sockets, write a client – server program to make the client send the file name and to

make the server send back the contents of the requested file if present. Implement the above

program using as message queues or FIFOs as IPC channels.

18. Write a program on datagram socket for client/server to display the messages on client side, typed

at the server side.

Part A - SIMULATION USING NS-2

Introduction to NS-2:

NS2 is an open-source simulation tool that runs on Linux. It is a discreet event simulator

targeted at networking research and provides substantial support for simulation of routing,

multicast protocols and IP protocols, such as UDP, TCP, RTP and SRM over wired and

wireless (local and satellite) networks.

Widely known as NS2, is simply an event driven simulation tool.

Useful in studying the dynamic nature of communication networks.

Simulation of wired as well as wireless network functions and protocols (e.g.,

routing algorithms, TCP, UDP) can be done using NS2.

In general, NS2 provides users with a way of specifying such network protocols and

simulating their corresponding behaviors.

Basic Architecture of NS2

TCL – Tool Command Language

Tcl is a very simple programming language. If you have programmed before, you can

learn enough to write interesting Tcl programs within a few hours. This page provides a

quick overview of the main features of Tcl. After reading this you'll probably be able to start

writing simple Tcl scripts on your own; however, we recommend that you consult one of the

many available Tcl books for more complete information.

Basic syntax

Tcl scripts are made up of commands separated by newlines or semicolons.

Commands all have the same basic form illustrated by the following example:

expr 20 + 10

This command computes the sum of 20 and 10 and returns the result, 30. You can try

out this example and all the others in this page by typing them to a Tcl application such as

tclsh; after a command completes, tclsh prints its result.

Each Tcl command consists of one or more words separated by spaces. In this

example there are four words: expr, 20, +, and 10. The first word is the name of a command

and the other words are arguments to that command. All Tcl commands consist of words,

but different commands treat their arguments differently. The expr command treats all of its

arguments together as an arithmetic expression, computes the result of that expression, and

returns the result as a string. In the expr command the division into words isn't significant:

you could just as easily have invoked the same command as

expr 20+10

However, for most commands the word structure is important, with each word used

for a distinct purpose.

All Tcl commands return results. If a command has no meaningful result then it

returns an empty string as its result.

Variables

Tcl allows you to store values in variables and use the values later in commands. The

set command is used to write and read variables. For example, the following command

modifies the variable x to hold the value 32:

set x 32

The command returns the new value of the variable. You can read the value of a

variable by invoking set with only a single argument:

set x

You don't need to declare variables in Tcl: a variable is created automatically the
first time it is set. Tcl variables don't have types: any variable can hold any value.

To use the value of a variable in a command, use variable substitution as in the

following example:

expr $x*3

When a $ appears in a command, Tcl treats the letters and digits following it as a

variable name, and substitutes the value of the variable in place of the name. In this example,

the actual argument received by the expr command will be 32*3 (assuming that variable x was

set as in the previous example). You can use variable substitution in any word of any

command, or even multiple times within a word:

set cmd expr

set x 11

$cmd $x*$x

Command substitution

You can also use the result of one command in an argument to another command.

This is called command substitution:

set a 44

set b [expr $a*4]

When a [appears in a command, Tcl treats everything between it and the matching]

as a nested Tcl command. Tcl evaluates the nested command and substitutes its result into

the enclosing command in place of the bracketed text. In the example above the second

argument of the second set command will be 176.

Quotes and braces

Double-quotes allow you to specify words that contain spaces. For example,

consider the following script:

set x 24

set y 18
set z "$x + $y is [expr $x + $y]"

After these three commands are evaluated variable z will have the value 24 + 18 is 42.

Everything between the quotes is passed to the set command as a single word. Note that (a)

command and variable substitutions are performed on the text between the quotes, and (b)

the quotes themselves are not passed to the command. If the quotes were not present, the set

command would have received 6 arguments, which would have caused an error.

Curly braces provide another way of grouping information into words. They are

different from quotes in that no substitutions are performed on the text between the curly

braces:

set z {$x + $y is [expr $x + $y]}

This command sets variable z to the value "$x + $y is [expr $x + $y]".

Control structures

Tcl provides a complete set of control structures including commands for conditional

execution, looping, and procedures. Tcl control structures are just commands that take Tcl

scripts as arguments. The example below creates a Tcl procedure called power, which raises a

base to an integer power:

proc power {base p} {

set result 1

while {$p > 0} {

set result [expr $result * $base]

set p [expr $p - 1]

}

return $result

}

This script consists of a single command, proc. The proc command takes three

arguments: the name of a procedure, a list of argument names, and the body of the procedure,

which is a Tcl script. Note that everything between the curly brace at the end of the first line

and the curly brace on the last line is passed verbatim to proc as a single argument. The proc

command creates a new Tcl command named power that takes two arguments. You can then

invoke power with commands like the following:

power 2 6

power 1.15 5

When power is invoked, the procedure body is evaluated. While the body is executing

it can access its arguments as variables: base will hold the first argument and p will hold the

second.

The body of the power procedure contains three Tcl commands: set, while, and return.

The while command does most of the work of the procedure. It takes two arguments, an

expression ($p > 0) and a body, which is another Tcl script. The while command evaluates its

expression argument using rules similar to those of the C programming language and if the

result is true (nonzero) then it evaluates the body as a Tcl script. It repeats this process over

and over until eventually the expression evaluates to false (zero). In this case the body of the

while command multiplied the result value by base and then decrements p. When p reaches

zero the result contains the desired power of base. The return command causes the procedure

to exit with the value of variable result as the procedure's result.

Where do commands come from?

As you have seen, all of the interesting features in Tcl are represented by commands.

Statements are commands, expressions are evaluated by executing commands, control

structures are commands, and procedures are commands.

Tcl commands are created in three ways. One group of commands is provided by

the Tcl interpreter itself. These commands are called builtin commands. They include all of

the commands you have seen so far and many more (see below). The builtin commands are

present in all Tcl applications.

The second group of commands is created using the Tcl extension mechanism. Tcl

provides APIs that allow you to create a new command by writing a command procedure in

C or C++ that implements the command. You then register the command procedure with the

Tcl interpreter by telling Tcl the name of the command that the procedure implements. In the

future, whenever that particular name is used for a Tcl command, Tcl will call your command

procedure to execute the command. The builtin commands are also implemented using this

same extension mechanism; their command procedures are simply part of the Tcl library.

When Tcl is used inside an application, the application incorporates its key features

into Tcl using the extension mechanism. Thus the set of available Tcl commands varies from

application to application. There are also numerous extension packages that can be

incorporated into any Tcl application. One of the best known extensions is Tk, which

provides powerful facilities for building graphical user interfaces. Other extensions provide

object-oriented programming, database access, more graphical capabilities, and a variety of

other features. One of Tcl's greatest advantages for building integration applications is the

ease with which it can be extended to incorporate new features or communicate with other

resources.

The third group of commands consists of procedures created with the proc command,

such as the power command created above. Typically, extensions are used for lower-level

functions where C programming is convenient, and procedures are used for higher-level

functions where it is easier to write in Tcl.

Wired TCL Script Components

Create the event scheduler

Open new files & turn on the tracing

Create the nodes

Setup the links

Configure the traffic type (e.g., TCP, UDP, etc)

Set the time of traffic generation (e.g., CBR, FTP)

Terminate the simulation

NS Simulator Preliminaries.

Initialization and termination aspects of the ns simulator.

Definition of network nodes, links, queues and topology.

Definition of agents and of applications.

The nam visualization tool.

Tracing and random variables.

Features of NS2

NS2 can be employed in most unix systems and windows. Most of the NS2 code is

in C++. It uses TCL as its scripting language, Otcl adds object orientation to TCL.NS(version

2) is an object oriented, discrete event driven network simulator that is freely distributed and

open source.

 Traffic Models: CBR, VBR, Web etc

 Protocols: TCP, UDP, HTTP, Routing algorithms,MAC etc

 Error Models: Uniform, bursty etc

 Misc: Radio propagation, Mobility models , Energy Models

 Topology Generation tools

 Visualization tools (NAM), Tracing

Structure of NS

● NS is an object oriented discrete event simulator

– Simulator maintains list of events and executes one event after another

– Single thread of control: no locking or race conditions

● Back end is C++ event scheduler

– Protocols mostly

– Fast to run, more control

 Front end is OTCL

Creating scenarios, extensions to C++ protocols

fast to write and change

Platforms

It can be employed in most unix systems(FreeBSD, Linux, Solaris) and Windows.

Source code

Most of NS2 code is in C++

Scripting language

It uses TCL as its scripting language OTcl adds object orientation to TCL.

Protocols implemented in NS2

Transport layer(Traffic Agent) – TCP, UDP

Network layer(Routing agent)

Interface queue – FIFO queue, Drop Tail queue, Priority queue

Logic link contol layer – IEEE 802.2, AR

How to use NS2

Design Simulation – Determine simulation scenario

Build ns-2 script using tcl.

Run simulation

Simulation with NS2

Define objects of simulation.

Connect the objects to each other

Start the source applications. Packets are then created and are transmitted through

network.

Exit the simulator after a certain fixed time.

NS programming Structure

● Create the event scheduler

● Turn on tracing

● Create network topology

● Create transport connections

● Generate traffic

● Insert errors

Sample Wired Simulation using NS-2

Creating Event Scheduler

● Create event scheduler: set ns [new simulator]

● Schedule an event: $ns at <time> <event>

– event is any legitimate ns/tcl function

$ns at 5.0 “finish”

proc finish {} {

global ns nf

close $nf

exec nam out.nam &

exit 0

}

● Start Scheduler

$ns run

Tracing

● All packet trace

$ns traceall[open out.tr w]

<event> <time> <from> <to> <pkt> <size>

…

<flowid> <src> <dst> <seqno> <aseqno>

+ 0.51 0 1 cbr 500 —– 0 0.0 1.0 0 2

_ 0.51 0 1 cbr 500 —– 0 0.0 1.0 0 2

R 0.514 0 1 cbr 500 —–0 0.0 1.0 0 0

● Variable trace

set par [open output/param.tr w]

$tcp attach $par

$tcp trace cwnd_

$tcp trace maxseq_

$tcp trace rtt_

Tracing and Animation

● Network Animator

set nf [open out.nam w]

$ns namtraceall

$nf

proc finish {} {

global ns nf

close $nf

exec nam out.nam &

exit 0

}

Creating topology

● Two nodes connected by a link

● Creating nodes

set n0 [$ns node]

set n1 [$ns node]

● Creating link between nodes

$ns <link_type> $n0 $n1 <bandwidth> <delay><queue-type>

$ns duplex-link$n0 $n1 1Mb 10ms DropTail

Data Sending

● Create UDP agent

set udp0 [new Agent/UDP]

$ns attach-agent $n0 $udp0

● Create CBR traffic source for feeding into UDP agent

set cbr0 [new Application/Traffic/CBR]

$cbr0 set packetSize_ 500

$cbr0 set interval_ 0.005

$cbr0 attach-agent$udp0

● Create traffic sink

set null0 [new Agent/Null]

$ns attach-agent$n1 $null0

● Connect two agents

$ns connect $udp0 $null0

● Start and stop of data

$ns at 0.5 “$cbr0 start”

$ns at 4.5 “$cbr0 stop”

Traffic on top of TCP

● FTP

set ftp [new Application/FTP]

$ftp attach-agent$tcp0

● Telnet

set telnet [new Application/Telnet]

$telnet attach-agent$tcp0

PROCEDURE

STEP 1: Start

STEP 2: Create the simulator object ns for designing the given simulation

STEP 3: Open the trace file and nam file in the write mode

STEP 4: Create the nodes of the simulation using the ‘set’ command

STEP 5: Create links to the appropriate nodes using $ns duplex-link command

STEP 6: Set the orientation for the nodes in the simulation using ‘orient’ command

STEP 7: Create TCP agent for the nodes and attach these agents to the nodes

STEP 8: The traffic generator used is FTP for both node0 and node1

STEP 9: Configure node1 as the sink and attach it

STEP10: Connect node0 and node1 using ‘connect’ command

STEP 11: Setting color for the nodes

STEP 12: Schedule the events for FTP agent 10 sec

STEP 13: Schedule the simulation for 5 minutes

Structure of Trace Files

When tracing into an output ASCII file, the trace is organized in 12 fields as
follows in fig shown below,

The meaning of the fields are:

Event Time From To PKT PKT Flags Fid Src Dest Seq Pkt

Node Node Type Size Addr Addr Num id

1. The first field is the event type. It is given by one of four possible symbols r, +, -, d

which correspond respectively to receive (at the output of the link), enqueued,

dequeued and dropped.

2. The second field gives the time at which the event occurs.

3. Gives the input node of the link at which the event occurs.

4. Gives the output node of the link at which the event occurs.

5. Gives the packet type (eg CBR or TCP)

6. Gives the packet size

7. Some flags

8. This is the flow id (fid) of IPv6 that a user can set for each flow at the input OTcl

script one can further use this field for analysis purposes; it is also used when

specifying stream color for the NAM display.

9. This is the source address given in the form of ―node.port‖.

10. This is the destination address, given in the same form.

11. This is the network layer protocol’s packet sequence number. Even though UDP

implementations in a real network do not use sequence number, ns keeps track of

UDP packet sequence number for analysis purposes

12. The last field shows the Unique id of the packet.

XGRAPH

The xgraph program draws a graph on an x-display given data read from either data

file or from standard input if no files are specified. It can display upto 64 independent data

sets using different colors and line styles for each set. It annotates the graph with a title, axis

labels, grid lines or tick marks, grid labels and a legend.

Syntax:

Options are listed here

/-bd <color> (Border)

This specifies the border color of the xgraph window.

/-bg <color> (Background)

This specifies the background color of the xgraph window.

/-fg<color> (Foreground)

This specifies the foreground color of the xgraph window.

Xgraph [options] file-name

/-lf <fontname> (LabelFont)

All axis labels and grid labels are drawn using this font.

/-t<string> (Title Text)

This string is centered at the top of the graph.

/-x <unit name> (XunitText)

This is the unit name for the x-axis. Its default is ―X‖.

/-y <unit name> (YunitText)

This is the unit name for the y-axis. Its default is ―Y‖.

Transmission of Ping messages:

Aim: Simulate the transmission of ping messages over a network topology

consisting of 6 nodes and find the number of packets dropped due to

congestion.

set ns [new Simulator]

set nf [open lab4.nam w]

$ns namtrace-all $nf

set tf [open lab4.tr w]

$ns trace-all $tf

set n0 [$ns node]

set n1 [$ns node]

set n2 [$ns node]

set n3 [$ns node]

set n4 [$ns node]

set n5 [$ns node]

$ns duplex-link $n0 $n4 1005Mb 1ms DropTail

$ns duplex-link $n1 $n4 50Mb 1ms DropTail

$ns duplex-link $n2 $n4 2000Mb 1ms DropTail

$ns duplex-link $n3 $n4 200Mb 1ms DropTail

$ns duplex-link $n4 $n5 1Mb 1ms DropTail

set p1 [new Agent/Ping] # letters A and P should be capital

$ns attach-agent $n0 $p1

$p1 set packetSize_ 50000

$p1 set interval_ 0.0001

set p2 [new Agent/Ping] #

letters A and P should be capital

$ns attach-agent $n1 $p2

set p3 [new Agent/Ping] # letters A and P should be capital

$ns attach-agent $n2 $p3

$p3 set packetSize_ 30000

$p3 set interval_ 0.00001

set p4 [new Agent/Ping] #

letters A and P should be capital

$ns attach-agent $n3 $p4

set p5 [new Agent/Ping] #

letters A and P should be capital

$ns attach-agent $n5 $p5

$ns queue-limit $n0 $n4 5

$ns queue-limit $n2 $n4 3

$ns queue-limit $n4 $n5 2

Agent/Ping instproc recv {from rtt} {

$self instvar node_

puts "node [$node_ id]received answer from $from with round trip time $rtt msec"

}

please provide space between $node_ and id. No space between $ and

from. No space between and $ and rtt */

$ns connect $p1 $p5

$ns connect $p3 $p4

proc finish { } {

global ns nf tf

$ns flush-trace

close $nf

close $tf

exec nam lab4.nam &

exit 0

}

$ns at 0.1 "$p1 send"

$ns at 0.2 "$p1 send"

$ns at 0.3 "$p1 send"

$ns at 0.4 "$p1 send"

$ns at 0.5 "$p1 send"

$ns at 0.6 "$p1 send"

$ns at 0.7 "$p1 send"

$ns at 0.8 "$p1 send"

$ns at 0.9 "$p1 send"

$ns at 1.0 "$p1 send"

$ns at 1.1 "$p1 send"
$ns at 1.2 "$p1 send"

$ns at 1.3 "$p1 send"

$ns at 1.4 "$p1 send"

$ns at 1.5 "$p1 send"

$ns at 1.6 "$p1 send"

$ns at 1.7 "$p1 send"

$ns at 1.8 "$p1 send"

$ns at 1.9 "$p1 send"

$ns at 2.0 "finish"

$ns run

AWK file: (Open a new editor using “vi command” and write awk file and save with

“.awk” extension)

BEGIN{

pingDrop=0;

}

{

if($1= ="d")

{

pingDrop++;

}

}

END{

printf("Total number of ping packets dropped due to congestion is

=%d\n",pingDrop);

}

Simulation of Ethernet Lan

Experiment Specific Instructions

1. To analyze the given problem you have to write a Tcl script and simulate with ns2

2. Begin by specifying the trace files and the nam files to be created

3. Define a finish procedure

4. Determine and create the nodes that will be used to create the topology. Here in our

experiment we are selecting 6 nodes namely 0, 1, 2, 3, 4, 5

5. Create the links to connect the nodes

6. Set up the LAN by specifying the nodes, and assign values for bandwidth, delay,

queue type and channel to it

7. Optionally you can position and orient the nodes and links to view a nice video
output with Nam

8. Set up the TCP and/or UDP connection(s) and the FTP/CBR (or any other

application) that will run over it

9. Schedule the different events like simulation start and stop, data transmission start

and stop

10. Call the finish procedure and mention the time at what time your simulation will

end

11. Execute the script with ns

Simulation Script:

#Lan simulation
set ns [new Simulator]

#define color for data flows

$ns color 1 Blue

$ns color 2 Red

#open tracefiles

set tracefile1 [open out.tr w]

set winfile [open winfile w]

$ns trace-all $tracefile1

#open nam file

set namfile [open out.nam w]

$ns namtrace-all $namfile

#define the finish procedure

proc finish {} {

global ns tracefile1 namfile

$ns flush-trace

close $tracefile1

close $namfile

exec nam out.nam &

exit 0

} #create six nodes

set n0 [$ns node]

set n1 [$ns node]

set n2 [$ns node]

set n3 [$ns node]

set n4 [$ns node]

set n5 [$ns node]

$n1 color Red

$n1 shape box

#create links between the nodes

$ns duplex-link $n0 $n2 2Mb 10ms DropTail

$ns duplex-link $n1 $n2 2Mb 10ms DropTail

$ns simplex-link $n2 $n3 0.3Mb 100ms DropTail

$ns simplex-link $n3 $n2 0.3Mb 100ms DropTail

set lan [$ns newLan "$n3 $n4 $n5" 0.5Mb 40ms LL Queue/DropTail

MAC/Csma/Cd Channel]

#Give node position

$ns duplex-link-op $n0 $n2 orient right-down

$ns duplex-link-op $n1 $n2 orient right-up

$ns simplex-link-op $n2 $n3 orient right

$ns simplex-link-op $n3 $n2 orient left

#set queue size of link(n2-n3) to 20

$ns queue-limit $n2 $n3 20

#setup TCP connection

set tcp [new Agent/TCP/Newreno]

$ns attach-agent $n0 $tcp

set sink [new Agent/TCPSink/DelAck]

$ns attach-agent $n4 $sink

$ns connect $tcp $sink

$tcp set fid_ 1

$tcp set packet_size_ 552

#set ftp over tcp connection

set ftp [new Application/FTP]

$ftp attach-agent $tcp

#setup a UDP connection

set udp [new Agent/UDP]

$ns attach-agent $n1 $udp

set null [new Agent/Null]

$ns attach-agent $n5 $null

$ns connect $udp $null

$udp set fid_ 2

#setup a CBR over UDP connection

set cbr [new Application/Traffic/CBR]

$cbr attach-agent $udp

$cbr set type_ CBR

$cbr set packet_size_ 1000

$cbr set rate_ 0.01Mb

$cbr set random_ false

#scheduling the events

$ns at 0.1 "$cbr start"

$ns at 1.0 "$ftp start"

$ns at 124.0 "$ftp stop"

$ns at 125.5 "$cbr stop"

proc plotWindow {tcpSource file} {

global ns

set time 0.1

set now [$ns now]

set cwnd [$tcpSource set cwnd_]

puts $file "$now $cwnd"

$ns at [expr $now+$time] "plotWindow $tcpSource $file"

}

$ns at 0.1 "plotWindow $tcp $winfile"

$ns at 125.0 "finish"

$ns run

Wireless Simulation using NS-2

Simple Wireless Program in NS2 is the best way to learn about how to code in NS2.

NS2 is one of the best simulation tool used by majority of scholars today due to its

highlighted features like support for OOPs concept, C++ programming fundamentals, real

time emulation support etc. NS2 is used to simulate both wired and wireless networks; here

we have focused on wireless network simulation in NS2 due to its wide applicability.

Regarding wired simulation in NS2, refer our other articles available in this site. Here, we

have taken a simple wireless program in NS2 to explain the students about how to work

with wireless networks in NS2.

http://www.ns2project.com/simple-wireless-program-in-ns2/

Simulating a Wireless Network in NS2

 Wireless Nodes

o A mobile node consists of network components:

 Link Layer (LL)

 Interface Queue (IfQ)

 the MAC layer

 the PHY layer: the wireless channel that the node transmit and receive

signals from

o At the beginning of a wireless simulation, we need to define the type for each of
these network components.

o Additionally, we need to define other parameters like:

 the type of antenna

 the radio-propagation model

 the type of ad-hoc routing protocol used by mobilenodes etc.

o Configuring a Wireless Node

o Creating wireless nodes is also achieved using the ns_ node command:

set ns_ [new Simulator] ;# Create a NS simulator object

set n1 [ns_ node] ;# Create a WIRELESS node !!!

o However:

BEFORE creating a wireless node you MUST first select (configure)

the node configuration parameters to "become" a wireless node.

o The NS2 command to select (configure) node configuration parameters is

node-config and it is used as follows:

o The value of most of the parameters are simple values

o Except for the value of the -topoInstance parameters.

o The topology is a Topography object that you must create.

Example:

o A commonly used wireless node configuration is:

set ns_ [new Simulator] ;# Create a NS simulator object

$ns_ node-config -llType LL

-ifqType "Queue/DropTail/PriQueue"

-ifqLen 50

-macType Mac/802_11

-phyType "Phy/WirelessPhy"

set ns_ [new Simulator] ;# Create a NS simulator object

$ns_ node-config \

-llType LL

-ifqType "Queue/DropTail/PriQueue"

-ifqLen 50

-macType Mac/802_11

-phyType "Phy/WirelessPhy"

-addressingType flat or hierarchical or expanded

-adhocRouting DSDV or DSR or TORA

-propType "Propagation/TwoRayGround"

-antType "Antenna/OmniAntenna"

-channelType "Channel/WirelessChannel"

-topoInstance $topo

-energyModel "EnergyModel"

-initialEnergy (in Joules)

-rxPower (in W)

-txPower (in W)

-agentTrace ON or OFF

-routerTrace ON or OFF

-macTrace ON or OFF

-movementTrace ON or OFF

set topo [new Topography] ;# Create a Topography object

$topo load_flatgrid 500 500 ;# Make a 500x500 grid topology

Sample Wireless Simulation Script

Simulator Instance Creation

set ns [new Simulator]

#Fixing the co-ordinate of simutaion area

set val(x) 500

set val(y) 500

Define options

set val(chan) Channel/WirelessChannel ;# channel type

set val(prop) Propagation/TwoRayGround ;# radio-propagation model

set val(netif) Phy/WirelessPhy ;# network interface type

set val(mac) Mac/802_11 ;# MAC type

set val(ifq) Queue/DropTail/PriQueue ;# interface queue type

set val(ll) LL ;# link layer type

set val(ant) Antenna/OmniAntenna ;# antenna model

set val(ifqlen) 50 ;# max packet in ifq

set val(nn) 2 ;# number of mobilenodes

set val(rp) AODV ;# routing protocol

set val(x) 500 ;# X dimension of topography

set val(y) 400 ;# Y dimension of topography

set val(stop) 10.0 ;# time of simulation end

set up topography object

set topo [new Topography]

$topo load_flatgrid $val(x) $val(y)

#Nam File Creation nam – network animator

set namfile [open sample1.nam w]

#Tracing all the events and cofiguration

$ns namtrace-all-wireless $namfile $val(x) $val(y)

#Trace File creation

set tracefile [open sample1.tr w]

#Tracing all the events and cofiguration

$ns trace-all $tracefile

-addressingType flat

-adhocRouting DSR or DSDV

-propType "Propagation/TwoRayGround"

-antType "Antenna/OmniAntenna"

-channelType "Channel/WirelessChannel"

-topoInstance $topo

-agentTrace ON

-routerTrace ON

-macTrace OFF

-movementTrace OFF

general operational descriptor- storing the hop details in the network

create-god $val(nn)

configure the nodes

$ns node-config -adhocRouting $val(rp) \

-llType $val(ll) \

-macType $val(mac) \

-ifqType $val(ifq) \

-ifqLen $val(ifqlen) \

-antType $val(ant) \

-propType $val(prop) \

-phyType $val(netif) \

-channelType $val(chan) \

-topoInstance $topo \

-agentTrace ON \

-routerTrace ON \

-macTrace OFF \

-movementTrace ON

Node Creation

set node1 [$ns node]
Initial color of the node

$node1 color black

#Location fixing for a single node

$node1 set X_ 200
$node1 set Y_ 100

$node1 set Z_ 0

set node2 [$ns node]

$node2 color black

$node2 set X_ 200

$node2 set Y_ 300

$node2 set Z_ 0

Label and coloring

$ns at 0.1 "$node1 color blue"

$ns at 0.1 "$node1 label Node1"

$ns at 0.1 "$node2 label Node2"

#Size of the node

$ns initial_node_pos $node1 30

$ns initial_node_pos $node2 30

ending nam and the simulation

$ns at $val(stop) "$ns nam-end-wireless $val(stop)"

$ns at $val(stop) "stop"

#Stopping the scheduler
$ns at 10.01 "puts \"end simulation\" ; $ns halt"

#$ns at 10.01 "$ns halt"

proc stop {} {

global namfile tracefile ns

$ns flush-trace

close $namfile

close $tracefile

#executing nam file

exec nam sample1.nam &

}

#Starting scheduler

$ns run

Implement and study the performance of GSM or CDMA on NS2/NS3 (Using MAC layer) or

equivalent Environment.

NS3 LTE Simulation

LTE is the latest high-speed cellular transmission network.LTE is a 4G technology with

download speeds that run the gamut from 3 to 28 Mbps worldwide.4G LTE is one of several

competing 4G standards along with Ultra Mobile Broadband (UMB) andWiMax (IEEE 802.16).Ns3

is the best choice among network simulator for simulating LTE framework.We provide customized

NS3 LTE Simulation Projects based on customer Requirements.

Advantages of LTE:

 LTE will supports seamless connection to existing networks like GSM, CDMA and

WCDMA.

 It has simple architecture because of low operating expenditure

 Time required for connecting network and is in range of a few hundred ms and power

savings states can now be entered and exited very quickly

 High data rates can be achieved in both downlink as well as uplink.

 Both FDD and TDD can be used on same platform.

 Optimized signaling for connection establishment and other air interface and mobility

management procedures have further improved the user experience.

Architecture of LTE:

LTE parameters:

 Transmission bandwidth.

 Mobility.

 Frequency range.

 Duplexing.

 Channel bandwidth.

 Channel coding.

 MIMO.

 Multi-antenna technology.

Code:

General Parameters

set opt(ecn) 0 ;

set opt(window) 30 ;

Topology

set opt(type) gsm ; #type of link:

AQM parameters

set opt(minth) 5 ;

set opt(maxth) 10 ;

set opt(adaptive) 1 ; # 1 for Adaptive RED, 0 for plain RED

#default downlink bandwidth in bps

set bwDL(gsm) 9600

#default uplink bandwidth in bps

set bwUL(gsm) 9600

#default downlink propagation delay in seconds

set propDL(gsm) .500

#default uplink propagation delay in seconds

set propUL(gsm) .500

#default buffer size in packets

set buf(gsm) 10

set ns [new Simulator]

set tf [open out.tr w]

set nf [open out1.nam w]

$ns trace-all $tf

$ns namtrace-all $nf

set nodes(s) [$ns node]

set nodes(bs1) [$ns node]

set nodes(ms) [$ns node]

set nodes(bs2) [$ns node]

set nodes(d) [$ns node]

proc cell_topo {} {

global ns nodes

$ns duplex-link $nodes(s) $nodes(bs1) 3Mbps 10ms DropTail

$ns duplex-link $nodes(bs1) $nodes(ms) 1Mbps 1ms RED

$ns duplex-link $nodes(ms) $nodes(bs2) 1Mbps 1ms RED

$ns duplex-link $nodes(bs2) $nodes(d) 3Mbps 50ms DropTail puts "Cell

Topology"

}

proc set_link_params {t} {

global ns nodes bwUL bwDL propUL propDL buf

$ns bandwidth $nodes(bs1) $nodes(ms) $bwDL($t) simplex

$ns bandwidth $nodes(ms) $nodes(bs1) $bwUL($t) simplex

$ns bandwidth $nodes(bs2) $nodes(ms) $bwDL($t) simplex

$ns bandwidth $nodes(ms) $nodes(bs2) $bwUL($t) simplex

$ns delay $nodes(bs1) $nodes(ms) $propDL($t) simplex

$ns delay $nodes(ms) $nodes(bs1) $propDL($t) simplex

$ns delay $nodes(bs2) $nodes(ms) $propDL($t) simplex

$ns delay $nodes(ms) $nodes(bs2) $propDL($t) simplex

$ns queue-limit $nodes(bs1) $nodes(ms) $buf($t)

$ns queue-limit $nodes(ms) $nodes(bs1) $buf($t)

$ns queue-limit $nodes(bs2) $nodes(ms) $buf($t)

$ns queue-limit $nodes(ms) $nodes(bs2) $buf($t)

}

RED and TCP parameters

Queue/RED set summarystats_ true

Queue/DropTail set summarystats_ true

Queue/RED set adaptive_ $opt(adaptive)

Queue/RED set q_weight_ 0.0

Queue/RED set thresh_ $opt(minth)

Queue/RED set maxthresh_ $opt(maxth)

Queue/DropTail set shrink_drops_ true

Agent/TCP set ecn_ $opt(ecn)

Agent/TCP set window_ $opt(window)

DelayLink set avoidReordering_ true

#Create topology

switch $opt(type) {

gsm - gprs - umts {cell_topo}

}

set_link_params $opt(type)

$ns insert-delayer $nodes(ms) $nodes(bs1) [new Delayer]

$ns insert-delayer $nodes(bs1) $nodes(ms) [new Delayer]

$ns insert-delayer $nodes(ms) $nodes(bs2) [new Delayer]

$ns insert-delayer $nodes(bs2) $nodes(ms) [new Delayer]

Set up forward TCP connection

set tcp1 [$ns create-connection TCP/Sack1 $nodes(s) TCPSink/Sack1 $nodes(d)

0]

set ftp1 [[set tcp1] attach-app FTP]

$ns at 0.5 "$ftp1 start"

proc stop {} {

global nodes ns opt nf tf

$ns flush-trace

close $nf

close $tf

exec nam out1.nam &

exit 0

}

$ns at 100 "stop"

$ns run

AWK FILE

BEGIN {

PacketRcvd=0;

Throughput=0.0;

}

{

if(($1=="r") && ($5=="tcp") && ($10=4.0))

{

PacketRcvd++;

}

}

END {

Throughput=((PacketRcvd*1000*8)/(95.0*1000000));

printf("packet received:%f\n", PacketRcvd);

printf("the throughput is:%f\n",Throughput);

}

PART B
Write a program for error detecting code using CRC-CCITT (16-bits).

Theory

It does error checking via polynomial division. In general, a bit string

b b b …b b b
n-1

As

n-2 n-3 2 1 0

bn-1Xn-1
+ bn-2 X

n-2
+ bn-3 Xn-3

+ …b2 X2
+ b1 X1

+ b0

Ex: -
10001000000100001

As

X16 + X12 + X5 +1

All computations are done in modulo 2

Algorithm:-

1. Given a bit string, append 0S to the end of it (the number of 0s is the same as the degree of the
generator polynomial) let B(x) be the polynomial corresponding to B.

2. Divide B(x) by some agreed on polynomial G(x) (generator polynomial) and determine the remainder
R(x). This division is to be done using Modulo 2 Division.

3. Define T(x) = B(x) –R(x)

(T(x)/G(x) => remainder 0)

4. Transmit T, the bit string corresponding to T(x).

5. Let T’ represent the bit stream the receiver gets and T’(x) the associated polynomial. The receiver
divides T1(x) by G(x). If there is a 0 remainder, the receiver concludes T = T’ and no error occurred
otherwise, the receiver concludes an error occurred and requires a retransmission.

The cyclic redundancy check, or CRC, is a technique for detecting errors in digital data, but not for

making corrections when errors are detected. It is used primarily in data transmission.

In the CRC method, a certain number of check bits, often called a checksum, are appended to the

message being transmitted. The receiver can determine whether or not the check bits agree with the data, to

ascertain with a certain degree of probability whether or not an error occurred in transmission.

Write a program to find the shortest path between vertices using bellman-ford algorithm.

Theory

Routing algorithm is a part of network layer software which is responsible for deciding which output line
an incoming packet should be transmitted on. If the subnet uses datagram internally, this decision must be
made for every arriving data packet since the best route may have changed since last time. If the subnet uses
virtual circuits internally, routing decisions are made only when a new established route is being set up.
The latter case is sometimes called session routing, because a route remains in force for an entire user session
(e.g., login session at a terminal or a file).

Routing algorithms can be grouped into two major classes: adaptive and nonadaptive. Nonadaptive

algorithms do not base their routing decisions on measurement or estimates of current traffic and topology.

Instead, the choice of route to use to get from I to J (for all I and J) is compute in advance, offline, and

downloaded to the routers when the network ids booted. This procedure is sometime called static routing.

Adaptive algorithms, in contrast, change their routing decisions to reflect changes in the topology, and

usually the traffic as well. Adaptive algorithms differ in where they get information (e.g., locally, from
adjacent routers, or from all routers), when they change the routes (e.g., every ■T sec, when the load changes,
or when the topology changes), and what metric is used for optimization (e.g., distance, number of hops, or
estimated transit time).

Two algorithms in particular, distance vector routing and link state routing are the most popular. Distance

vector routing algorithms operate by having each router maintain a table (i.e., vector) giving the best known
distance to each destination and which line to get there. These tables are updated by exchanging information
with the neighbors.

The distance vector routing algorithm is sometimes called by other names, including the distributed

Bellman-Ford routing algorithm and the Ford-Fulkerson algorithm, after the researchers who developed it
(Bellman, 1957; and Ford and Fulkerson, 1962). It was the original ARPANET routing algorithm and was
also used in the Internet under the RIP and in early versions of DECnet and Novell’s IPX. AppleTalk and
Cisco routers use improved distance vector protocols.

In distance vector routing, each router maintains a routing table indexed by, and containing one entry for,

each router in subnet. This entry contains two parts: the preferred out going line to use for that destination,
and an estimate of the time or distance to that destination. The metric used might be number of hops, time
delay in milliseconds, total number of packets queued along the path, or something similar.

The router is assumed to know the “distance” to each of its neighbor. If the metric is hops, the distance

is just one hop. If the metric is queue length, the router simply examines each queue. If the metric is delay,
the router can measure it directly with special ECHO packets hat the receiver just time stamps and sends
back as fast as possible.

The Count to Infinity Problem.

Distance vector routing algorithm reacts rapidly to good news, but leisurely to bad news. Consider a
router whose best route to destination X is large. If on the next exchange neighbor. A suddenly reports a

short delay to X, the router just switches over to using the line to A to send traffic to X. In one vector
exchange, the good news is processed.

To see how fast good news propagates, consider the five node (linear) subnet of following figure, where

the delay metric is the number of hops. Suppose A is down initially and all the other routers know this. In
other words, they have all recorded the delay to A as infinity.

A B C D E A B C D E

∞

∞ ∞ ∞

Initially 1 2 3 4 Initially

1 ∞ ∞ ∞ After 1 exchange 3 2 3 4 After 1 exchange

1 2 ∞ ∞ After 2 exchange 3 3 3 4 After 2 exchange

1 2 3 ∞ After 3 exchange 5 3 5 4 After 3 exchange

1 2 3 4 After 4 exchange 5 6 5 6 After 4 exchange
 7 6 7 6 After 5 exchange
 7 8 7 8 After 6 exchange
 :

 ∞ ∞ ∞ ∞

Many ad hoc solutions to the count to infinity problem have been proposed in the literature, each one more

complicated and less useful than the one before it. The split horizon algorithm works the same way as distance

vector routing, except that the distance to X is not reported on line that packets for X are sent on (actually, it

is reported as infinity). In the initial state of right figure, for example, C tells D the truth about distance to A

but C tells B that its distance to A is infinite. Similarly, D tells the truth to E but lies to C.

Each node x begins with Dx(y), an estimate of the cost of the least-cost path from itself to node y,

for all nodes in N. Let Dx = [Dx(y): y in N] be node x’s distance vector, which is the vector of cost

estimates from x to all other nodes, y, in N. With the DV algorithm, each node x maintains the

following routing information:

• For each neighbor v, the cost c(x,v) from x to directly attached neighbor, v

• Node x’s distance vector, that is, Dx = [Dx(y): y in N], containing x’s estimate of its cost to all

destinations, y, in N

• The distance vectors of each of its neighbors, that is, Dv = [Dv(y): y in N] for each neighbor v of

x

TCP Socket

8. Using TCP/IP sockets, write a client – server program to make the client send the file name to

make the server send back the contents of the requested file if present. Implement the above

program using as message queues or FIFOs as IPC channels.

TCP is a connection-oriented protocol. This means that before the client and server can

start to send data to each other, they first need to handshake and establish a TCP connection. One

end of the TCP connection is attached to the client socket and the other end is attached to a server

socket. When creating the TCP connection, we associate with it the client socket address

(IPaddress and port number) and the server socket address (IPaddress and port number). With the

TCP connection established, when one side wants to send data to the other side, it just drops the

data into the TCP connection via its socket.

With the server process running, the client process can initiate a TCP connection to the

server. This is done in the client program by creating a TCP socket. When the client creates its TCP

socket, it specifies the address of the welcoming socket in the server, namely, the IP address of the

server host and the port number of the socket. After creating its socket, the client initiates a three-

way handshake and establishes a TCP connection with the server.

Steps:

 BufferedReader Object, keyRead is created to take input from the keyboard

 To send the file name to the server, PrintWriter is used

 To receive the file contents from t e server, SocketReader of bufferedReader is created.

 PrintWriter is got a provision for auto flushing

 Second parameter of the constructor is set to true to indicate auto flushing.

Steps at client side:

1. Take input for the filename from the keyboard using inputStream

2. Send filename to the server using outputStream

3. Client receives the file content and prints it on the console

Import net.*;

import java.io.*;

public class ContentsClient

{

public static void main(String args[]) throws Exception

{

Socket sock = new Socket("127.0.0.1", 4000);

// reading the file name from keyboard. Uses input stream

System.out.print("Enter the file name");

BufferedReader keyRead = new BufferedReader(new InputStreamReader(System.in));

String fname = keyRead.readLine();

// sending the file name to server. Uses PrintWriter

OutputStream ostream = sock.getOutputStream();

PrintWriter pwrite = new PrintWriter(ostream, true);

pwrite.println(fname);

// receiving the contents from server. Uses input stream

InputStream istream = sock.getInputStream();

BufferedReader socketRead = new BufferedReader(new InputStreamReader(istream));

String str;

while((str = socketRead.readLine()) != null) // reading line-by-line

{

System.out.println(str);

}

pwrite.close(); socketRead.close(); keyRead.close();

}

}

Server Side:

Steps at Server Side

1. Read the file name sent from the client using InputStream.

2. Open the file and read the contents

3. Send the contents of each line separately

Classes used:

BufferedReader, InputStream, outputStream, getOutputStream, PrintWriter, InputStream,

getInputStream

Import java.net.*;

import java.io.*;

public class ContentsServer

{

public static void main(String args[]) throws Exception

{ // establishing the connection with the server

ServerSocket sersock = new ServerSocket(4000);

System.out.println("Server ready for connection");

Socket sock = sersock.accept(); // binding with port: 4000

System.out.println("Connection is successful and wating for chatting");

// reading the file name from client

InputStream istream = sock.getInputStream();

BufferedReader fileRead =new BufferedReader(new InputStreamReader(istream));

String fname = fileRead.readLine();

// reading file contents

BufferedReader contentRead = new BufferedReader(new FileReader(fname));

// keeping output stream ready to send the contents

OutputStream ostream = sock.getOutputStream();

PrintWriter pwrite = new PrintWriter(ostream, true);

String str;

while((str = contentRead.readLine()) != null) // reading line-by-line from file

{

pwrite.println(str); // sending each line to client

}

sock.close(); sersock.close(); // closing network sockets

pwrite.close(); fileRead.close(); contentRead.close();

}

}

Write a program on datagram socket for client/server to display the messages on client side,

typed at the server side.

Using User Datagram Protocol, Applications can send data/message to the other hosts

without prior communications or channel or path. This means even if the destination host is not

available, application can send data. There is no guarantee that the data is received in the other

side. Hence it's not a reliable service.

UDP is appropriate in places where delivery of data doesn't matters during data transition.

Client Program:

import java.io.*;

import java.net.*;

class UDPClient

{

public static void main(String[] a) throws IOException

{

int i =2000;

while(true)

{

byte buf[]=new byte[1024];

DatagramSocket ds=new DatagramSocket(i);

DatagramPacket dp=new DatagramPacket(buf,buf.length);

ds.receive(dp);

String str2=new String(dp.getData(),0,dp.getLength());

System.out.println("Server:"+str2);

//ds.close();

System.out.println("**************************");

i=i+1;

}

}

}

Server Program

import java.io.*;

import java.net.*;

class UDPServer

{

public static void main(String [] a) throws IOException

{

int i =2000;

String fooString1 = new String("exit");

while(true)

{

//String ip = ;

InetAddress clientIP=InetAddress.getLocalHost();

int clientPort=i;

byte buf[]=new byte[1024];

DatagramSocket ds=new DatagramSocket();

BufferedReader dis =new BufferedReader(new

InputStreamReader(System.in));

System.out.println("Server is Running. ");

String str1=new String(dis.readLine());

if(str1.equals(fooString1))

{

}

else

{

ds.close();

break;

buf=str1.getBytes();

DatagramPacket packet=new

DatagramPacket(buf,str1.length(),clientIP,clientPort);

ds.send(packet);

i=i+1;

}

// ds.close();

}

}

}

