Minterm and Maxterm: Questions
What is a minterm in boolean algebra?
What is a maxterm in boolean algebra?
Describe the method of representing a boolean expression using minterms or maxterms?
Minterm - Shorthand notation: Practice work
Represent the following boolean expressions in minterm shorthand notations.
F=
CD + A C + ABC + B D + A + BC + AB + BF=
B D + A C + ABC + B + A CD + BC + AB + BCDF=
BC + A C + B D + BCD + AB + A CD + ABC + BF=
ABC + BC + A CD + AB + B D + BCD + A + ABCDF=
A C + ABC + BCD + ABCD + B D + A CD + BC + B DF=
BC + A C + B D + ABCD + A CD + BCD + AB + B DF=
AB D + A CD + BC + B D + ABC + BCD + A + A CF=
BCD + ABC + B D + A D + A CD + AB + BC + ABCDF=
A D + ABC + A CD + BCD + B D + BC + AB D + A CF=
B D + A CD + ABCD + BC + A D + BCD + AB + A CF=
AB + A CD + ABCD + BCD + B D + BC + A D + A CDF=
B D + ABCD + BC + A C + BCD + A D + AB + A CDF=
AB D + A C + ABC + BC + B D + BCD + A D + A CDF=
BCD + ABCD + A C + AB + A CD + BC + B D + A DF=
BCD + ABC + AB + A C + B D + A CD + BC + A DF=
BCD + AB D + B D + ABC + A D + A CD + BC + B DF=
B D + ABCD + BCD + A CD + B D + BC + AB D + A DF=
AB D + A C + ABC + BCD + B D + A CD + BC + A DF=
BC + AB + A CD + ABCD + B D + A CD + BCD + A DF=
BC + A C + AB + ABCD + A CD + BCD + B D + A DF=
BCD + AB + ABC + A C + B D + A CD + A D + BCF=
BC + ABC + AB D + A C + BCD + A D + BCD + A CDF=
B D + A CD + AB D + ABCD + BCD + A D + A C + BCF=
BC + AB D + ABCD + BCD + B D + A C + A D + A CDF=
ABC + BC + A CD + AB + B D + A D + BCD + A CF=
ABCD + B D + A CD + BCD + AB + BC + A D + A CDF=
BCD + AB D + BC + ABCD + B D + A D + A CD + BCF=
BCD + AB + ABC + A D + A C + B D + A CD + BCF=
ABCD + A C + AB D + B D + BC + A CD + BCD + A DF=
BCD + ABCD + B D + ABC + A D + BC + A CD + A CF=
B D + AB + ABCD + A C + A D + BCD + BC + A CDF=
BCD + ABC + AB + A C + A D + BC + A CD + B DF=
ABCD + B D + A C + BCD + B D + A CD + BC + ABCF=
BC + A CD + ABCD + B D + AB D + A D + BCD + A CDF=
B D + ABCD + BCD + ABC + A C + A D + BC + A CDF=
ABCD + B D + BC + A CD + BCD + ABC + A D + AB DF=
BCD + ABC + A C + B D + ABCD + BC + A D + A CDF=
B D + A C + ABC + BCD + AB D + A D + BCD + A CDF=
ABCD + B D + AB D + A C + A D + BC + BCD + ABCF=
BC + ABCD + AB D + A CD + A D + B D + BCD + A CF=
BCD + AB D + BC + ABC + A CD + BC + A D + ABCDF=
ABCD + A C + ABC + A D + BCD + B D + BC + ABCF=
BCD + ABCD + A C + ABC + B D + A D + BC + A CDF=
BC + ABC + B D + ABCD + A D + BCD + A CD + ABCF=
ABC + BC + AB + BCD + A C + B D + BCD + ABCDF=
BCD + ABCD + BC + A D + ABC + B D + A CD + AB DF=
B D + A CD + AB + BCD + ABC + BC + A D + A CDF=
ABC + B D + ABCD + A CD + BC + A C + AB D + A DF=
ABCD + A C + B D + ABC + BC + A D + A CD + BCDF=
BCD + ABC + AB + B D + A CD + BC + A D + ABC
Maxterm - Shorthand notation: Practice work
Represent the following boolean expressions in maxterm shorthand notations
F=
(A + B + C + D)( + B + + )(A + + + D)( + + C + )( + B + C + )(A + + C + D)( + B + + D)F=
(A + B + C + )( + B + + D)(A + + + )( + + C + D)( + B + C + D)(A + + C + )( + B + + )F=
(A + B + C + D)( + B + + )(A + + + D)( + + C + )(A + B + C + )( + + C + D)( + B + + D)F=
(A + B + C + )( + B + + D)(A + + + )( + + C + D)(A + B + C + D)( + + C + )( + B + + )F=
(A + B + C + D)( + B + + )(A + + + D)( + + C + )( + B + C + D)(A + + C + )( + B + + D)F=
(A + B + C + )( + B + + D)(A + + + )( + + C + D)(A + B + C + D)( + + C + )( + B + + )F=
(A + B + C + D)( + B + + )(A + + + D)( + + C + )( + B + C + D)(A + + C + )( + B + + D)F=
(A + B + C + )( + B + + D)(A + + + )( + + C + D)(A + B + C + D)( + + C + )( + B + + )F=
(A + B + C + D)( + B + + )(A + + + D)( + + C + )( + B + C + D)(A + + C + )( + B + + D)F=
(A + B + C + )( + B + + D)(A + + + )( + + C + D)(A + B + C + D)( + + C + )( + B + + )F=
(A + B + C + D)( + B + + )(A + + + D)( + + C + )( + B + C + D)(A + + C + )( + B + + D)F=
(A + B + C + )( + B + + D)(A + + + )( + + C + D)(A + B + C + D)( + + C + )( + B + + )F=
(A + B + C + D)( + B + + )(A + + + D)( + + C + )( + B + C + D)(A + + C + )( + B + + D)F=
(A + B + C + )( + B + + D)(A + + + )( + + C + D)(A + B + C + D)( + + C + )( + B + + )F=
(A + B + C + D)( + B + + )(A + + + D)( + + C + )( + B + C + D)(A + + C + )( + B + + D)F=
(A + B + C + )( + B + + D)(A + + + )( + + C + D)(A + B + C + D)( + + C + )( + B + + )F=
(A + B + C + D)( + B + + )(A + + + D)( + + C + )( + B + C + D)(A + + C + )( + B + + D)F=
(A + B + C + )( + B + + D)(A + + + )( + + C + D)(A + B + C + D)( + + C + )( + B + + )F=
(A + B + C + D)( + B + + )(A + + + D)( + + C + )( + B + C + D)(A + + C + )( + B + + D)F=
(A + B + C + )( + B + + D)(A + + + )( + + C + D)(A + B + C + D)( + + C + )( + B + + )F=
(A + B + C + D)( + B + + )(A + + + D)( + + C + )( + B + C + D)(A + + C + )( + B + + )F=
(A + B + C + )( + B + + D)(A + + + )( + + C + D)(A + B + C + D)( + + C + )( + B + + )F=
(A + B + C + D)( + B + + )(A + + + D)( + + C + )( + B + C + D)(A + + C + )( + B + + )F=
(A + B + C + )( + B + + D)(A + + + )( + + C + D)(A + B + C + D)( + + C + )( + B + + )F=
(A + B + C + D)( + B + + )(A + + + D)( + + C + )( + B + C + D)(A + + C + )( + B + + )F=
(A + B + C + )( + B + + D)(A + + + )( + + C + D)(A + B + C + D)( + + C + )( + B + + )F=
(A + B + C + D)( + B + + )(A + + + D)( + + C + )( + B + C + D)(A + + C + )( + B + + )F=
(A + B + C + )( + B + + D)(A + + + )( + + C + D)(A + B + C + D)( + + C + )( + B + + )F=
(A + B + C + D)( + B + + )(A + + + D)( + + C + )( + B + C + D)(A + + C + )( + B + + )F=
(A + B + C + )( + B + + D)(A + + + )( + + C + D)(A + B + C + D)( + + C + )( + B + + )F=
(A + B + C + D)( + B + + )(A + + + D)( + + C + )( + B + C + D)(A + + C + )( + B + + )F=
(A + B + C + )( + B + + D)(A + + + )( + + C + D)(A + B + C + D)( + + C + )( + B + + )F=
(A + B + C + D)( + B + + )(A + + + D)( + + C + )( + B + C + D)(A + + C + )( + B + + )F=
(A + B + C + )( + B + + D)(A + + + )( + + C + D)(A + B + C + D)( + + C + )( + B + + )F=
(A + B + C + D)( + B + + )(A + + + D)( + + C + )( + B + C + D)(A + + C + )( + B + + )F=
(A + B + C + )( + B + + D)(A + + + )( + + C + D)(A + B + C + D)( + + C + )( + B + + )F=
(A + B + C + D)( + B + + )(A + + + D)( + + C + )( + B + C + D)(A + + C + )( + B + + )F=
(A + B + C + )( + B + + D)(A + + + )( + + C + D)(A + B + C + D)( + + C + )( + B + + )F=
(A + B + C + D)( + B + + )(A + + + D)( + + C + )( + B + C + D)(A + + C + )( + B + + )F=
(A + B + C + )( + B + + D)(A + + + )( + + C + D)(A + B + C + D)( + + C + )( + B + + )F=
(A + B + C + D)( + B + + )(A + + + D)( + + C + )( + B + C + D)(A + + C + )( + B + + )F=
(A + B + C + )( + B + + D)(A + + + )( + + C + D)(A + B + C + D)( + + C + )( + B + + )F=
(A + B + C + D)( + B + + )(A + + + D)( + + C + )( + B + C + D)(A + + C + )( + B + + )F=
(A + B + C + )( + B + + D)(A + + + )( + + C + D)(A + B + C + D)( + + C + )( + B + + )F=
(A + B + C + D)( + B + + )(A + + + D)( + + C + )( + B + C + D)(A + + C + )( + B + + )F=
(A + B + C + )( + B + + D)(A + + + )( + + C + D)(A + B + C + D)( + + C + )( + B + + )F=
(A + B + C + D)( + B + + )(A + + + D)( + + C + )( + B + C + D)(A + + C + )( + B + + )F=
(A + B + C + )( + B + + D)(A + + + )( + + C + D)(A + B + C + D)( + + C + )( + B + + )F=
(A + B + C + D)( + B + + )(A + + + D)( + + C + )( + B + C + D)(A + + C + )( + B + + )F=
(A + B + C + )( + B + + D)(A + + + )( + + C + D)(A + B + C + D)( + + C + )( + B + + )