Lecture on **Pump**

Dr. Shibayan Sarkar Department of Mechanical Engineering Indian School of Mines Dhanbad

WHAT IS PUMP?

A hydrodynamic pump machine is a device which converts the mechanical energy held by a device into potential and kinetic energy in fluid.

Pumps enable a liquid to:

1. Flow from a region or low pressure to one of high pressure.

CHARACTERISTICS OF POSITIVE DISPLACEMENT PUMPS

Rotary:- Rotating action occurs periodically.

Gear – comprises two gears in a housing with small radial end clearances. Used in lubrication system.

Lobe- Handles solids also. Used in paper and pulp industry.

Sliding Vane – comprises number of vanes.

Screw- three screw with housing is used with housing. Can create high pressure, uniform delivery, used to transfer lubricant.

Reciprocating:- Reciprocating action occurs periodically.

Piston – comprises a cylinder and piston,

Diaphram – comprises flexible diaphram made

from rubber or rubberised febric

Plunger – comprises plunger, uses crank mechanism

Pneumatic – Handles compressed air.

Centrifugal Pumps:

Centrifugal pumps have a rotating impeller, also known as a blade, that is immersed in the liquid. Liquid enters the pump near the axis of the impeller, and the rotating impeller sweeps the liquid out toward the ends of the impeller blades at high pressure.

Positive-displacement Pumps:

A variety of positive-displacement pumps are also available, generally consisting of a rotating member with a number of lobes that move in a close-fitting casing. The liquid is trapped in the spaces between the lobes and then discharged into a region of higher pressure. A common device of this type is the gear pump, which consists of a pair of meshing gears. The lobes in this case are the gear teeth

- A rotodynamic or non- positive displacement pump imparts velocity energy to the fluid, which is converted to pressure energy upon exiting the pump casing.
- A positive displacement pump moves a fixed volume of fluid within the pump casing by applying a force to moveable boundaries containing the fluid volume.

Differences between centrifugal pumps, reciprocating pumps and rotary pumps (relatively broad categories)

Parameter	Centrifugal Pumps	Reciprocating Pumps	Rotary Pumps
Optimum Flow and Pressure Applications	Medium/High discharge Capacity, Low/Medium Pressure, small change in pr. Diff. causes a large change in flow	Low discharge Capacity, High Pressure, pr. Fluctuation doesnot affect discharge	Low/Medium discharge Capacity, Low/Medium Pressure
Maximum Flow Rate	100,000+ GPM	10,000+ GPM	10,000+ GPM
Low Flow Rate Capability	No	Yes	Yes
Maximum Pressure	6,000+ PSI	100,000+ PSI	4,000+ PSI (pound/in ²)
Requires Pr. Relief Valve	No	Yes	Yes
Smooth or Pulsating Flow	Smooth	Pulsating	Smooth
Variable or Constant Flow	Variable	Constant	Constant
Self-priming	No	Yes	Yes
Space Considerations	Requires Less Space	Requires More Space	Requires Less Space
Costs	Lower Initial Lower Maintenance Higher Power	Higher Initial Higher Maintenance Lower Power	Lower Initial Lower Maintenance Lower Power
Fluid Handling	Suitable for a wide range including clean, clear, non-abrasive fluids to fluids with abrasive, high-solid content.	Suitable for clean, clear, non- abrasive fluids. Specially-fitted pumps suitable for abrasive- slurry service.	Requires clean, clear, non- abrasive fluid due to close tolerances
	Not suitable for high viscosity fluids	Suitable for high viscosity fluids	Optimum performance with high viscosity fluids
	Lower tolerance for entrained gases (vapour trapped in flowing iquid)	Higher tolerance for entrained gases	Higher tolerance for entrained gases
	1		2

Advantages and Disadvantages of Centrifugal Pump

Advantages

Simple in construction and cheap. Handle liquid with large amounts of solids.

No metal to metal fits.

No valves involved in pump operation.

Maintenance costs are lower.

<u>Disadvantages</u>

Cannot handle highly viscous fluids efficiently greater than 1000 centipoise (cP) . (1P= 0.100 kgm⁻¹s⁻¹)

Cannot be operated at low capacity.

Cannot be operated at high heads.

Maximum efficiency holds over a narrow range of conditions.

Cannot operate, if percentage volume of dissolved gases is greater than 5%.

Selection of Pump based on:

✓ Pressure and capacity (discharge).

✓ Property of liquid (viscosity, temperature, corrosiveness, grittiness i.e. erosion for suspended particle).

 \checkmark Initial and maintenance cost.

✓ Pump duty.

 \checkmark Availability of space, size and position of locating the pump.

 \checkmark Speed of rotation and power required.

 \checkmark Standardization with respect to the type and makes of pumps already available at site.

Construction of Centrifugal Pumps

Main components:

I. Stationary componets, casing, casing cover and bearings

2. Rotating components, impeller and shaft.

Energy changes occur by virtue of impeller and volute. Liquid is fed into the pump at the center of a rotating impeller (eye) and thrown outward by centrifugal force.

tongue

Volute

Casing

Impeller

The conversion of kinetic energy into pressure energy supplies the pressure difference between the suction side and delivery side of the pump

Construction of Centrifugal Pumps

3. Other accessories:

I. **Delivery pipe, strainer and foot valve-** centre pipe connects the centre (eye) of the impeller to the sump.

2. Suction pipe, strainer and foot valve- a regular valve is just near the pump outlet serves to control the flow of liquid into delivery pipe.

Casing (stationary part)

I. Volute casings for a higher head.

A *volute or spiral casing* is a curved funnel increasing in area to the discharge port.

Cross-section gradually increases from tongue towards delivery pipe, therefore velocity decreases, pressure increases. Single stage pumps are made by volute, though they have greater eddy loss, i.e. lower efficiency.

Construction wise: Integral,

vertical/horizontal/diagonal split, segmented casing

II. Circular casings for low head and high capacity.

have stationary diffusion vanes surrounding the impeller periphery that convert velocity energy (dynamic head) to pressure energy (static head). Pump fitted with guide vane is called " diffuser pump" or "turbine pump".

III. Whirlpool chamber casings annular space is provided in between volute and impeller- arrest the formation of eddies – reduce loss of energy – improve efficiency.

Head is developed partly by action of the centrifugal force upon the liquid and partly by axial propulsion.

Construction of Centrifugal Pumps

Shape and Number of Vane

Usually 6 to 12, shaped like curved, cylindrical or more complex.

Working Head and Number of Stages

Low head (upto 15 m) medium head (15 to 40 m) high head (over 40 m). Single stage pump can exceed 40 m , for more head multistage pump is required – number of impeller in series.

Single suction and double suction

With respect to the liquid entrance, pump may be onesided suction or two-sided suction, to increase discharge.

Two stage Double suction pump **Shaft Position**

Single stage single suction pump

Split Case Double suction pump

Most pump have horizontal shaft. To accommodate space it may be vertical (for deep well, mines)

Classification of the pump may be based on liquid handled, suspended solid, viscous liquid handled, application in irrigation, boiler feed, condensate circulation, power used such as IC engine or electric motor etc.

Construction of Centrifugal Pumps

Typical Specification of a Split Case High Flow

- Double Suction Centrifugal Pump

Overview

This Fire Fighting Pump is high flow rate pump single stage double suction split casing pump with high capacity and pressure. Usually temperature can not more than 80 °C. Once using check valve, the pump can be self-priming.

Main Material

Casing: Gray cast iron, ductile cast iron, cast steel. **Impeller:** Brozne, Gray cast iron, Silicon brass, stainless steel **Shaft:** Stainless steel, Carbon steel

Ритр Туре	Split Casing Pump
Casing Material	HT200 (Grey Cast Iron -1.5-4.3% carbon and 0.3-5% silicon plus manganese, sulphur and phosphorus) (Tensile Strength 200 σb≥/Mpa)
Impeller	SS304,SS316,Copper,HT200
Pump Sealing	Packing seal,Mechanical seal
Capacity Range	I 26m³/h~8520m³/h
Head Range	8m~140m
Inlet/Outlet diameter	Impeller 6"(150mm)~32"(800mm)
Rotary Speed	1450rmp/2950rpm/585rpm/730rpm/970rpm
NPSH(r)	2.5m~7.5m
N.weight	165kgs~2550kgs
Pump Parts	Casing,Pump cover,Impeller,Shaft, Double suction sealing ring Shaft sleeve,Bearing etc
Certificate	ISO9001:2008,CE,TUV

1	2	3	4	5					
Pump Casing	mp Casing Pump Cap		Bearing	Double suction seal ring					
6	7	8	9	10					
Bearing Sleeve	Coupling	Bearing Boding	Stuff Cap	Stuff					

Heads of Pump:

where :

 V_s = Velocity of fluid in the suction pipe. V_d = Velocity of fluid in the delivery pipe.

 h_s = Suction lift. h_d = Delivery lift.

Total Static or vertical lift = $h_s + h_d$

(1) Suction Head of the Pump (H_s) $H_s = h_i + h_{fs} + h_s + \frac{V_s^2}{2g} = \frac{P_s}{\gamma} + \frac{V_s^2}{2g}$ where :

 $h_i = \text{loss of head at inlet to suction pipe (negligible)}$

 h_{fs} = loss of head due to friction.

 $h_s + h_i + h_{fs}$ = head measured by vacuum gauge near suction flange, adjacent to the pump

(2) **Delivery Head** of the Pump (H_d)

 $H_{d} = h_{fd} + h_{d} + \frac{V_{d}^{2}}{2g} = \frac{P_{d}}{\gamma} + \frac{V_{d}^{2}}{2g}$

where : $h_d + h_{fd}$ = head measured by pressure gauge near delivery flange, adjacent to the pump

Heads of Pump:

Total External Head of the Pump against which pump has to work (**H**)

H = (suction head) + (delivery head) - (velocity head in the suction pipe)

 $=H_s+H_d-\frac{V_s^2}{2\sigma}$ $= \left(\frac{P_s}{\omega} + \frac{V_s^2}{2g}\right) + \left(\frac{p_d}{w} + \frac{V_d^2}{2g}\right) - \frac{V_s^2}{2g}$ head is quite low compared to static head, hence neglected $= (h_i + h_{fs} + h_s) + \left(h_d + h_{fd} + \frac{V_d^2}{2\sigma}\right)$

Generally discharge velocity

(4) **Manometric Head** is difference of total energy at inlet and exit of pump (H_m) Fluid energy at suction $P_s / \gamma + V_s^2 / 2g$ Fluid energy at discharge $P_d / \gamma + V_d^2 / 2g + h$ where h is difference in elevation of two pressure gauge installed at inlet and outlet $H_{m} = (P_{d} / \gamma + V_{d}^{2} / 2g + h) - (P_{s} / \gamma + V_{s}^{2} / 2g) = P_{d} / \gamma - P_{s} / \gamma$

 H_m is actually differences in pressure gauge reading

Another expression of H_m considering the external condition is as follows Manometric head = static head + head losses (friction and minor) in the suction and delivery pipe + velocity head in delivery pipe

$$\begin{split} H_m &= (h_s + h_d) + (h_{fs} + h_{fd}) + \frac{V_d^2}{2g} \\ &= \left(h_s + h_{fs}\right) + \left(h_d + h_{fd} + \frac{V_d^2}{2g}\right) \\ &= \left(H_s - \frac{V_s^2}{2g}\right) + H_d = H_s + H_d - \frac{V_s^2}{2g} \end{split}$$

10

Eventually this expression equals to the **Total External Head**

Free surface **Discharge** level Delivery tank Hd Ρ_d/γ Casing -Delivery flange Suction P/ flange Impeller Shaft Foot valve Strainer

(4) **Hydraulic Efficiency** (η_h) – Hydraulic Losses refer to energy consumed by friction and fluid separation in the flow passage. This losses decrease the lift or head developed by the impeller. **Hydraulic efficiency** is the ratio of manometric head developed by the pump to theoretical or ideal head developed by the pump (Hi). where $H_i = \mu H_e$, μ is slip factor of impeller, if number of blade is infinite, then $\mu = 1$. (for medium and higher discharge Q>0.28 m³/s, $\eta_v = 0.98$.)

(4) **Volumetric Efficiency** (η_v) – Flow through pump is always associated with a volumetric loss due to leakage effect between the impeller and casing. Fluid leakage occurs due to pressure differential between the pressure and discharge side of the impeller, in the labyrinth seal, gland and stuffing box. **volumetric efficiency** is the ratio of actual to theoretical discharge.

(5) **Overall Efficiency** (η_o) –The ratio of the power output of the pump to the power input to the pump. $(\eta_o \text{ Varies from } 0.7 \text{ to } 0.85)$

$$\eta_h = \frac{H_m}{H_i} = \frac{H_m}{\mu H_e} = \frac{\eta_{man}}{\mu}$$

$$\eta_v = \frac{Q}{(Q+q)_i}$$

$$\eta_o = \left(\frac{WH_m}{1000} kW\right) / S.P. \frac{\eta_o = \eta_{man} \times \eta_m}{\eta_o = \eta_h \times \eta_v \times \eta_m}$$

Type of Impeller:

Three main categories of impeller due to type of impeller's vane:

- Radial vanes, Fig. (a).
- Backward vanes, Fig. (b).
- Forward vanes, Fig. (c).

where :

V = absolute velocity of the water.

U = Tangential velocity of impeller (peripheral velocity).

 V_r = relative velocity of water to the wheel. V_f = velocity of flow. v_w = velocity of whirl N = Speed of impeller in (rpm). β = angle between v_2 with the direction of motion of vane at outlet $\phi_{=}$ = angle made by v_{r2} with direction of motion of vane at outlet, vane angle at outlet

where :

Fig (a) Γ_b = direction of blade circulation Fig (b) V_r = Distribution of relative velocity in blade spaces. Fig (c) Distribution of pressure in a certain radial section.

The Γ decreases V_r in working side of blade and vice versa. This forms pressure differential which is overcome by torque developed by the drive.

Due to inertial effect, the liquid which is trapped between the impeller vanes is reluctant to move round with the impeller. This results difference of pressure force across the vane. Therefore, high pressure developed in the leading side and low pressure on the trailing side. This difference is called **vane loading** which increases with the number of vane.

Slip factor:

On high pressure side: liquid follows the blade contour it leaves blade tangentially . On low pressure side: liquid leaves the vane with a certain circumferential component. As a result liquid leaves at an average angle β ' which is less than actual geometric blade angle β .

- Due to deviation in flow path, tangential component get reduced by (V_{w2}-V'_{w2}) which is called **slip** of the impeller.
- The *ideal slip coefficient* is then defined as the ratio of <u>whirl component with the fluid</u> <u>deviation</u> to <u>the whirl component without fluid deviation</u>
- Due to real fluid effect (friction and fluid separation on the wall of disc shroud and vanes) the radial velocity may not be uniform around the periphery of the impeller.
- The net effect of the non-uniform velocity and slip is to reduce Euler Head (H_e)
- Also further reduction of the losses occurs due to intake loss, friction and separation loss etc $\pi \sin \beta$ <u>Empirical Relations for Slip factor</u>
- (i) p

 $\mu = 1 - \frac{\pi \sin \beta}{Z \left[1 - \left(V_f / u_2 \right) \cot \beta \right]}$ (Stodolas relation)

$$= 1 - \frac{\pi}{Z} \text{ for radial } (\beta = 90^{\circ}) \text{ blade}$$

(*ii*)
$$\mu = \left[A - B \left(V_f / u_2 \right) \cot \beta \right]$$
$$= \left[1 - \left(V_f / u_2 \right) \cot \beta \right]$$

(Busemann expression) where A and B are functions of r_2/r_1 , β and Z

(*iii*)
$$\mu = 1 - \frac{0.63 \pi}{Z \left[1 - \left(V_f / u_2 \right) \cot \beta \right]}$$
 (Stanitz relation)

which, for radial blades, reduces to $\mu = 1 - \frac{0.63 \pi}{Z}$

$$(iv) \frac{1}{\mu} = 1 + \frac{1.2(1 + \sin\beta)}{Z \left[1 - (r_1 / r_2)^2\right]}$$

$$\mathbf{V}_{r2}^{*} \mathbf{V}_{r2}^{*} \mathbf{V}_{r2}^{*}$$

Velocity diagram For Radial vane

Loss and actual Head-Q curve

The major loss considered is shock losses at the impeller inlet caused by the mismatch of fluid and metal angles

(P/Pg)

(b)

b)

(a)

(a)

(C)

Velocity Vector Diagram and Assumptions

Assumptions:

✓ Infinite number of vanes, no energy loss in impeller due to friction and eddy formation.

- ✓ Uniform velocity distribution in narrow passage between two adjacent passages.
- ✓ Fluid enters in the eye in radial/axial direction and whirl component at inlet $V_{w1} = 0$, $V_{f1} = V_1$
- \checkmark No loss due to shock entry, i.e. Inlet edge of the impeller blades are parallel to the relative velocity.

The rate of change of angular momentum $m(V_{w2}r_2 - V_{w1}r_1) = \rho Q(V_{w2}r_2 - V_{w1}r_1) = \frac{\gamma Q}{g}(V_{w2}r_2 - V_{w1}r_1)$ Therefore, Torque = $\gamma Q / g(V_{w2}r_2 - V_{w1}r_1)$ Energy transfer (E) = torque × rotational speed in rad/sec $\frac{\gamma Q}{g}(V_{w2}r_2 - V_{w1}r_1) \times \omega = \frac{\gamma Q}{g}(V_{w2}u_2 - V_{w1}u_1) \times \omega$

Energy transfer per unit head i.e. Euler Head (H_e) $E/\gamma Q = (V_{w2}u_2 - V_{w1}u_1)/g$ As whirl component at inlet V_{w1} = 0, therefore H_e = $(V_{w2}u_2 - V_{w1}u_1)/g = V_{w2}u_2/g$ (=H_m, shockless entry)

Finally $H_{e} = \frac{(V_{2}^{2} - V_{1}^{2})}{2g} + \frac{(u_{2}^{2} - u_{1}^{2})}{2g} + \frac{(V_{r2}^{2} - V_{r1}^{2})}{2g}$

Head Capacity relationship

$$H_{e} = \frac{V_{w2}u_{2}}{g} = \frac{u_{2}}{g} \left[u_{2} - V_{f2} \cot \beta \right] = \frac{u_{2}}{g} \left[u_{2} - \frac{Q}{A_{2}} \cot \beta \right]$$

For a particular pump running at constant speed, i.e. β , A_2 and u_2 =constant, So,

P(Q AND H CONSTANTS)

Term III : change in KE due to retardation of fluid relative to impeller.

Cavitation and other criteria

Multistage Pump:

N= number of stage, then Total Head developed = $n \times H_m$ Cavitation:

$$\sigma = \frac{V_s^2}{2g} = \frac{(H_{atm} - H_v) - H_s - h_{Ls}}{H} = \frac{NPSH}{H}$$

If Critical cavitation factor (σ_c) > σ , then cavitation start: $\sigma_c = 1.042 \times 10^{-3} (N_s)^{\frac{4}{3}}$ **Maximum suction lift for a pump** is as follows, otherwise vaporization of liquid at inlet of pump take place i.e. cavitation

$$Hs = H_{atm} - H_{v} - \frac{V_{s}^{2}}{2g} - h_{Ls}$$

 h_{Ls} = frictional head loss in suction pipe , H_s = suction pressure head in water (m), H = head developed by pump

So, for cavitation free operation $\sigma \ge \sigma_c$ or NPSH $\ge \sigma_c$ H i.e. Minimum NPSH should be equal to σ_c H

Priming

When centrifugal pump is not running for some time, the water present in the pump casing and suction pipe flows back to the sump and these spaces get filled with air. Now, when motor is switched on and pump starts running, the head developed is equal to H_e of air. Since $\rho_{air} << \rho_{water}$, the head thus generated cannot produce spontaneously the vacuum required to start the pumping action. Accordingly water cannot be sucked in along the suction pipe to reach the impeller. For making the pump deliver water, there need to make the casing, impeller and suction line free from air and fill these spaces with water. This process is called priming.

For small pump vent cock is provided to supply the water, and for self priming pump certain arrangement is done to ensure supply of water in suction pipe.

Performance characteristics of centrifugal pump

Efficiency n

Pumps are generally designed for maximum efficiency and that occurs when the pump operates at design speed. A particular characteristics corresponding to the design speed are called operating characteristics. It helps to obtain design discharge, head corresponding to the point of maximum efficiency.

Muschel curve depicts the performance of the pump over its entire range of operation. Data for plotting these curves is obtained from main characteristics curve curves η vs Q, H vs Q. It helps to locate the region where pump would operate with maximum efficiency.

Detection of Pump Problems during operation

1. Pump fails to start pumping (No delivery of liquid)

(i) Pump may not be properly primed, (ii) Suction lift and delivery head too high, (iii) Too low speed, (iv) Wrong direction of pump rotation, (v) Clogging of impeller or strainer or suction line.

2. Pump working but not upto capacity and pressure

(i) Air leakage into pump, (ii) Too low speed, (iii) Wrong direction of pump rotation, (iv) Partial clogging of impeller, (v) Small impeller diameter, (vi) Discharge head higher than anticipated, (vii) Insufficient suction head in case of hot or volatile liquids being pumped.

3. Pump takes too much of power

(i) Too high speed, (ii) Wrong direction of pump rotation, (iii) Pump delivers too much liquid at too low head, (iv) Shaft is bent, impeller rubs on the casing, (v) Too high specific gravity of the liquid being pumped, (vi) Cavitation, (vii) Too tight packings and lack of lubrication.

4. Pump gets overheated

(i) Rubbing between stationary and moving elements, (ii) Lack of lubrication, (iii) Very high impeller speed, (iv) Mechanical defects such as worn out rings, bent shaft, bearings not cleaned properly.

5. Noisy operation and pump vibrations

(i) Cavitation, (ii) Misalignment of pump shaft, (iii) Worn out bearings, (iv) Improper foundations, (v) Rubbing action between stationary and moving elements.

The Affinity Law

The affinity laws for pumps/fans are used in hydraulics to express the relationship between variables involved in pump or fan performance (such as head, volumetric flow rate, shaft speed) and power. They apply to pumps, fans, and hydraulic turbines. In these rotary implements, the affinity laws apply both to centrifugal and axial flows.

The affinity laws are useful as they allow prediction of the head discharge characteristic of a pump or fan from a known characteristic measured at a different speed or impeller diameter. The only requirement is that the two pumps or fans are dynamically similar, that is the ratios of the fluid forced are the same.

Formulas for Refiguring Pu	Similarity relationship		
Diameter Change Only	Speed Change Only	Diameter and Speed Change	H
$\frac{Q_2}{Q_1} = \left(\frac{D_2}{D_1} \times \frac{N_2}{N_1}\right)$	$\frac{Q_2}{Q_1} = \left(\frac{N_2}{N_1}\right)$	$\frac{Q_2}{Q_1} = \left(\frac{D_2}{D_1}\right)$	$\frac{1}{D^2 N^2} = \text{constant}$
$\frac{H_2}{H_1} = \left(\frac{D_2}{D_1} \times \frac{N_2}{N_1}\right)^2$	$\frac{H_2}{H_1} = \left(\frac{N_2}{N_1}\right)^2$	$\frac{H_2}{H_1} = \left(\frac{D_2}{D_1}\right)^2$	$\frac{Q}{D^3N}$ = constant
$\frac{P_2}{P_1} = \left(\frac{D_2}{D_1} \times \frac{N_2}{N_1}\right)^2$	$\frac{P_2}{P_1} = \left(\frac{N_2}{N_1}\right)^2$	$\frac{P_2}{P_1} = \left(\frac{D_2}{D_1}\right)^2$	$\frac{P}{D^5 N^3}$ = constant

Specific Speed for Pump $N \sqrt{O}$	Type of impeller	Slow speed radial flow	Normal speed radial flow	High speed radial flow	Mixed flow	Axial or Propeller
Specific Speed $Ns = \frac{N\sqrt{Q}}{H^{3/4}}$	Specific Speed	10-30	30-50	50-80	80-160	160-500

Specific Speed (IS code)
$$N_S = \frac{3.65N\sqrt{Q}}{H^{3/4}}$$

As per BIS Code: Speed of a Geometrically similar pump capable of lifting 75 kg of water per second to a height of one meter.

Specific Speed has dimension L^{3/4}T^{-3/2},

Dimensionless specific speed is
$$Ns = \frac{N\sqrt{Q}}{(gH)^{3/4}}$$

Dimension of dimensionless specific speed $Ns = \frac{T^{-1}(L^3T^{-1})^{1/2}}{(LT^{-2} \times L)^{3/4}}$

17

Kirloskar 'KDS+/KDS++' Series Three Phase Pumps

Single stage, High speed, Centrifugal Monobloc with Volute Type Delivery Pumps

Features

- Can withstand wide voltage fluctuations from 300-440 volts
- Suction lift upto 7.5 metres.
- Top flat efficiency curve: minimum variation in efficiency in entire operating range.
- Efficiency at par with internationally available pumps higher upto 10 points than minimum
- required by Indian Standards specifications.
- Models are with IP-44 protection. Models with IP-55 protection are also available on request
- Class of insulation 'B' ('F' class from 7.5 kW and above).
- Designed to prevent overloading and motor burning.
- Dynamically balanced rotating parts ensure minimum vibrations.

Range					ande fi				Neaters Street	Ma	teria	l of	Cor	nstru	ictic	on:				-			
Head	d - 6 - 76 metres acity - 37.0-2.0 Litres per sec. er Rating - 1.5 kW to 22 kW (2.0 HP to 30.0 HP)							Standard supply						Optional supply									
Capacity Bower Bating								N. cile		Impeller : Cast Delivery Casing : Cast Motor body : Cast					last iron impelle last iron Shaft					. 5	Stainle	ss Ste	Jel
Power Haung									a hera (and						Iron		Sh	naft Sk	eve	: C	Chrom	e Stee	el i
Direction	OI F	total	uon	a de fraction	at dia					Shaf	t			Carb	on Ste	lei							
Anticlockwise,	wnen	viewed	a from s	suction	side.	100				Shaf	t Slee	ve -	Caller Ra	Bron	ze	-		Chipping .		C P			
Approximate	perfo	orman	ce of '	KDS+/	KDS+	+' Sei	ries, 2	2 Pole	a, Mor	lopio	c Pur	nps, a	at rate	a voi	tage,	50 FI2		e Pn	ase A	O FO	MA-18C	etani ad una	
	Pump Pipe								TOTAL HEAD IN METRES										Rate				
Pump	Rat	ing	Size	(mm)	With Control			Water Park		10	40	20	00	34	26	200	20	20	201	26	40		Volta
Model	KW	HP	500.	DEL.	0	0	10	i divaac	14	10	10	20			ED CI	ECON	D	di také	A SALEAR	a state and a			(401
										CA	APAC	IIYIP	LIIF	ES P	ERSI	ECON	U						415
KDS-216++	1.5	2.0	65	50		11.0	10.0	8.8	7.15	4.0													410
KDS-225++	1.5	2.0	50	40		5.3	5.18	4.9	4.75	4.5	4.25	3.9	3.56	3.1	2.25								410
1KDS-314+	2.2	3.0	80	80	19.1	17.8	16.2	13.8	10.4														415
KDS-318++	2.2	3.0	80	65		13.4	12.6	11.7	10.7	9.2	7.5				10								.41
KDS-325++	2.2	3.0	65	50			9.2	8.8	8.4	7.9	7.4	7.0	6.4	5.8	4.9	1.0	0.0	0.0	0.0	07	0.0		410
KDS-335++	2.2	3.0	50	40					5.0	4.9	4.8	4.7	4.6	4.4	4.2	4.0	3.8	3.6	3.2	2.1	2.0		410
KDS-515+	3.7	5.0	100	100	32.8	31.0	28.0	24.2	19.0	12.9	10.0	110	11.0										400
KDS-520+	3.7	5.0	80	80	24.0	23.0	22.0	20.8	19.5	17.9	16.0	14.0	11.0	10.0	0.7	6.4							400
KDS-527++	3.7	5.0	80	65'				07.0	05.0	14.3	13.5	12.5	11.0	14.5	0.7	0.4							400
KDS-822++	5.5	7.5	100	100				27.3	25.6	24.0	22.2	20.1	17.6	14.5	110	10.0	44.4						400
KDS-830++	5.5	7.5	80	65				00.0	04.0	19.0	18.2	17.3	16.4	15.4	14.2	13.0	11.1						400
KDS-1030++	7.5	10.0	100	100			00.5	32.0	31.0	29.8	28.5	27.0	25.0	23.5	10 75	17.0	17.0	15 7	14.6	13.4	96		41
KDS-1040+	7.5	10.0	80	65	No. The Content	S NEW YORK	23.5	23.0	22.0	22.2	21.0	20.9	20.30	19.5	10.75	EA	56	60	64	68	70	76	
		-	0.5	50	18	20	24	28	30	32	50	40	Mile a	1.519	- AL		00	120042	000.45-00		Sec. 10, 1044	125 Kanathi	400
KDS-538+	3.7	5.0	65	50		8.5	8.3	1.0	7.0	7.1	0.0	27	22	27	20								400
KDS-550++	3.7	5.0	50	40				10.0	10.0	11 0	4.1	3.7	0.0	2.1	2.0								400
KDS-837	5.5	7.5	65	65			10.7	12.0	0 0 0	0.5	91	71	17				-						400
KDS-844++	5.5	7.5	65	65		-	10.7	10.0	9.9	9.5	0.4	7.5	6.8	59	45	37	1	1	-				400
KDS-852++	5.5	1.5	65	50			120	12 5	123	12 0	11 4	10.7	9.6	81	6.0	0.7		1					41
KDS-1050++	1.5	10.0	00	50			12.3	12.0	12.0	12.0	11.4	7.8	74	6.9	6.4	6.1	5.8	5.1	4.3	3.0			41
KDS-1065++	1.5	10.0	100	100	33 /	32.0	20 0	23.8	125		1	1.0	7.4	0.0	0.1	0.1	0.0						41
KDS-1331+	9.3	12.5	00	65	55.4	10.6	18 0	18 2	17.8	173	15.8	14.3	119					1					41
KDS-1348+	9.3	12.5	100	100	36.9	35.0	33.0	30.0	28.0	25.0	17.5	14.0	1										41
KDS-1537+	11.0	15.0	80	65	30.0	00.0	00.0	00.0	19.4	192	18.5	17.4	16.0	14.5	12.2	10.5		1					41
KDG-1575	110	15.0	65	50	1	-	-		10.4	10.2		1			8.1	7.9	7.7	7.4	6.9	6.4	5.8	4.9	41
KDS-15/5+	15.0	20.0	100	80	33.8	33.2	31.8	30.4	1 29.7	28.8	27.2	25.0	22.8	19.4									41
KDS-2560+	18.7	25.0	100	80	100.0	00.2	0	00.						24.5	22.0	20.5	18.6	13.0					41
KDS-3068+	22 0	30.0	100	80	1	1		-	1					28.0	26.5	25.6	24.5	215	17.5	10.0			41
1100 0000+	1	00.0	1 .00	1	1	1		-	_	and second se	-	-	-		-	a service serv	and the second se	100 100 Page 100	MARK MILLING	CONTRACTOR NO.	STATISTICS CONTRACTOR	CONTRACTOR OF THE OWNER OF THE	AND ADDRESS

All pumpsets except KDS-837+, KDS-575+, KDS-2560+ and KDS-3068+ are ISI marked. KDS-318-+ can' also b- offered with pipe size 65x50mm. Above pumpsets except KDS-2560+ and KDS 3068 can be supplied with stuffing box arrangement for GLAND PACKED or MECHANICAL SEAL against the requirement. Note: Performance applicable to liquid of specific gravity 1 and viscosity as of water

Sample Sheet for pump selection

Suppose -----

Replaceable wearing parts and hence longer life.
Designed for automatic air release during priming

- Industries, for clear water handling

Apartments, Buildings and Hotels

- Water supply for domestic use in high-rise

Applications

- Irrigation

System Requirements:

Suction Pipe diameter: 2" (50 NB) Delivery Pipe diameter: 1.5" (40 NB) Motor speed – 1450 rpm Head – 8 m to 18 m Discharge – 8 LPS to 10 LPS

Now Select your Pump