Lecture on Kaplan Turbine

by

Dr. Shibayan Sarkar

Department of Mechanical Engg

Indian Institute of Technology (ISM), Dhanbad

Different arrangement of axial turbine in a power plant system

- (1) Suitable for low head (approx. less than 30 m), high discharge.
- (2) Propeller type, water enters into the turbine laterally, gets deflected by the guide vanes and then flow through the propeller.
- (3) Runner is in form of boss which is nothing but extension of the bottom end of the shaft.
- (4) Capable of taking 15 to 20 % overload at all gate opening at full load and part load condition when working in constant speed and head.
- (5) Blade angle may also be adjusted under all working condition.
- (6) Sometimes electric generator coupled to kaplan turbine is enclosed and work inside a straight passage of a shape of bulb. This watertight bulb is submerged inside the water and bends at inlet to casing, draft tube etc. – bulb turbine.

Governing Mechanism: Kaplan

Francis Turbine	Kalpan Turbines	
. Correct disposition of the guide and moving vanes is obtained at <u>full load only.</u>	Correct disposition of the guide and moving blades is obtained at any load.	Servomotor –
. System <u>may have one or two servomo</u> tors depending on the size of the unit.	Governing is a <u>lways done by two servomoto</u> rs irrespective of the size of the unit.	Operating —
 Guide vane regulation is done : servomotor controls only the guide vanes. 	Guide vane and runner vane regulation is done; one servomotor controls the guide vanes and the second operates on the runner vanes.	shaft Runner blade
. Since only the guide vanes are controlled, high efficiency is obtained only at full load.	Due to simultaneous control of both guide and runner vanes, high efficiency is attained even at partial loads.	
. Servom <u>otor is kept outside the turbin</u> e shaft	Both the servomotors are kept inside the hollow shaft of the turbine runner.	
. Or <u>dinary governor is sufficient</u> as the servomo- tor is of large size.	Heavy duty governor is essential due to smaller size of the servomotors.	V_{f1}

Francis Turbine		Kalpan Turbines	
1.	Radially inward or mixed flow turbine.	Purely axial flow turbine.	
2.	Horizontal or vertical disposition of shaft.	Only vertical shaft disposition.	
3.	Runner vanes are not adjustable.	Runner vanes are adjustable.	
4.	Large number of vanes ; 16 to 24 blades.	Small number of vanes ; 3 to 8 blades.	
5.	Large resistance needs to be overcome owing to more vanes and greater area of contact with water.	Less resistance as there are fewer vanes an less wetted area.	
6.	Medium head turbine (60 m to 250 m) and works under medium flow rate.	Low head turbine (upto 30 m) and requires very large volumetric flow rates.	
7.	Specific speed ranges from 50-250.	Specific speed ranges from 250-850.	
8.	Ordinary governor is sufficient for speed controls as the servomotor is of larger size.	Heavy duty governor is essential for speed control due to smaller size of the servomotor	

Generator shaft

Apply Bernoulli's equation between runner exit (2) and free surface (3)

$$\frac{p_2}{\rho g} + \frac{v_2^2}{2g} + z_2 = \frac{p_3}{\rho g} + \frac{v_3^2}{2g} + z_3 \qquad \text{Where } h_s = z_2 - z_3, \\ \frac{p_2}{\rho g} + \frac{v_2^2}{2g} + h_s = \frac{p_A}{\rho g}$$

Presuming Cavitation does commence P₂=Pv (vapour pressure)

 $\frac{v_2^2}{2g} = \frac{p_A}{\rho g} - \frac{p_v}{\rho g} - h_s$ And devia head H, a all terms And deviding both side by working head H, and considering $P/\gamma = H$ in $\frac{v_2^2}{2gH} = \sigma = \frac{H_A - H_v - h_s}{H}$ σ = Thoma cavitation factor, occurs.

$$\sigma_c = 0.044 (N_s / 100)^2$$

Propeller Turbine:

$$\sigma_c = 0.3 + 0.0032 (N_s / 100)^{2.73}$$

$$\sigma_{c} = 1.1\sigma_{c} |_{propeller}$$

and if $\sigma < \sigma_c$, then cavitation 2 1 0.6 0.4 No cavitation 0.2 Cavitation 0.1 Turbines: L-1 propeller 0.06 turbir minir 0.04 25,00 0.02 Suctio 0.01 0.4 0.8 0.04 0.2 0.1 'Dimensionless specific speed' Kn (rev.)

 σ

rbine designed for
inimal cavitation after
5,000 hours
action Specific Speed
$$S_{su} = \frac{N\sqrt{P}}{H_{su}^{5/4}} N_s = \frac{N\sqrt{P}}{H^{5/4}}$$

 $\sigma = \left(\frac{N_s}{S_{su}}\right)^{4/5}$

Cavitations in Kaplan Turbines

Figure 4-1. Kaplan Turbine Typical Areas of Cavitation Pitting

Figure 4-2. Areas of Runner Cavitation Pitting Propeller and Kaplan Turbines

03/01/15

Cavitations in Francis Turbines

Figure 4-3. Francis Turbine - Typical Areas of Cavitation Pitting

03/01/15