A three throw reciprocatng positive displacement pump has cylinder of 25 cm diameter and stroke of 50 cm each. The pump is required to deliver 100 litres/second at a head of 90 m. Friction losses are estimated to be 1 m in suction pipe and 19 m in delivery pipe. Velocity of water in the delivery pipe is 1 m/s, overall pump efficiency is 85% and the slip is 3%. Determine the speed of pump and the power required to run it.

| apart by a common shaft.                             |                      |                                              |
|------------------------------------------------------|----------------------|----------------------------------------------|
| D <sub>p</sub>                                       | 25 cm                | 0.25 m                                       |
| Lp                                                   | 50 cm                | 0.5 m                                        |
| (hs+hd)                                              | 90 m                 |                                              |
| Q                                                    | 100 lit              | 0.1 m <sup>3</sup> /s                        |
| h <sub>fs</sub>                                      | 1 m                  |                                              |
| h <sub>fd</sub>                                      | 19 m                 |                                              |
| V <sub>d</sub>                                       | 1 m/s                |                                              |
| ηο                                                   | 0.85                 |                                              |
| S                                                    | 0.03                 | $(Q_{th}-Q)/Q_{th}$ or $Q = (1-S)^{*}Q_{th}$ |
| γ                                                    | 9810                 | $Q_{th}=3*A_pL_pN/60$                        |
|                                                      |                      |                                              |
| $A_{p}=\pi/4*D_{p}^{2}$                              | 0.049 m <sup>2</sup> |                                              |
| Q <sub>th</sub>                                      | 0.001227 *N          | $Q_{th}=(3A_pL_p/60)*N$                      |
| Q=                                                   | 0.001227 <b>*N*</b>  | (1-S)                                        |
| N=                                                   | 84.023 rpm           |                                              |
| Total head against which pump has to w               | ork                  |                                              |
| $H=(h_{c}+h_{d})+(h_{f_{c}}+h_{f_{d}})+V_{d}^{2}/2g$ |                      |                                              |
|                                                      | 110.05 m             |                                              |
| Water Power (YQH)                                    | 107.96 kW            |                                              |
| ηo=Water Power/(Power required to dri                | ve the shaft or      | power supplied to shaft)                     |
| Power required to drive the shaft =                  | 127.01 kW            |                                              |

A three throw pump has three equl cylinders with rams connected to cranks at  $120^\circ$  apart by a common shaft.

The plunger of a reciprocating pump has an accleration of  $2.5 \text{ m/s}^2$  at the end of the stroke, and the sectional area of plunger equals 1.65 times that of delivery pipe. The delivery pipe is 55 m long and it rises upward at a lope of 1 in 5. Find whether separation will take place, if so, at which section of the pipe. Assume simple harmonic motion, and take atmosphere pressure = 10.3 m of water and separation pressure = 2.5 m of water.

| l <sub>d</sub>                                                                                                  | 55 m                 |                  |
|-----------------------------------------------------------------------------------------------------------------|----------------------|------------------|
| Slope <sub>ld</sub>                                                                                             | 0.2                  |                  |
| A <sub>p</sub> /A <sub>s</sub>                                                                                  | 1.65                 |                  |
| $\alpha = \omega^2 r$                                                                                           | 2.5 m/s <sup>2</sup> |                  |
| h <sub>atm</sub> =                                                                                              | 10.3 m               |                  |
| h <sub>sep</sub>                                                                                                | 2.5 m                |                  |
|                                                                                                                 |                      |                  |
| delivery head h <sub>d</sub>                                                                                    | 11 m                 |                  |
| Pressure head due to accleration in delivery side h <sub>ad</sub>                                               |                      |                  |
| $h_{ad} = (I_d/g)^* (A_p/A_d)^* \omega^2 r(\cos \theta)$                                                        |                      |                  |
| During delivery possibility of separation is at the end of stroke                                               |                      |                  |
| Then angular displacement θ                                                                                     | 180 °                |                  |
| h <sub>ad</sub>                                                                                                 | -23.13 m             |                  |
| Pressure head at cylinder at the end of delivery stroke                                                         |                      |                  |
| (h <sub>d</sub> +h <sub>ad</sub> ) above atmospheric head=(h <sub>d</sub> +h <sub>ad</sub> )+h <sub>atm</sub> = | -1.83 m              | separation occur |
|                                                                                                                 |                      |                  |
|                                                                                                                 |                      |                  |

Let I be the length of the pipe upto the section where the separation occurs  $h_d=I^*slope_{Id}$ 

| h <sub>d</sub> =                                                   | 0.2 *l   |
|--------------------------------------------------------------------|----------|
| $h_{ad} = (I/g)^* (A_p/A_d)^* \omega^2 r(\cos \theta)$             | -0.42 *I |
| Limiting condition for separation = $(h_d+h_{ad})+h_{atm}=h_{sep}$ |          |
| 1=                                                                 | 35.4 m   |

A double acting single cylinder reciprocating pump of 12.5 cm bore and 25 cm stroke runs at 30 rpm. The centre of pump is 4 m above the level of water in the sump and 30 m below the delivery water level. The lengths of the suction and delivery pipes are 6 m and 35 m of the diameter of each pipe is 6 cm. Assuming simple harmonic motion, find the pressure head in meters of water on the piston at the begining, mid and end of suction and delivery strokes. Take atmospheric pressure head = 10.3 m of water and friction coefficient f =0.01 for both pipes. If the mechanical efficiency is 75% calculate the power required to drive the pump. Aslo calculate the maximum head at any instant against which the pump has to work and its corresponding duty.

| η <sub>m</sub> =                                                | 75 %            | 0.75   |  |
|-----------------------------------------------------------------|-----------------|--------|--|
| I <sub>d</sub> =                                                | 35 m            |        |  |
| f                                                               | 0.01            |        |  |
| bore dia d <sub>b</sub> =                                       | 12.5 cm         | 0.13 m |  |
| I <sub>s</sub> =                                                | 6 m             |        |  |
| Suction and deliver pipe dia d <sub>s</sub> or d <sub>d</sub> = | 6 cm            | 0.06 m |  |
| N=                                                              | 36 rpm          |        |  |
| Stroke L =                                                      | 25 cm           | 0.25 m |  |
| h <sub>atm</sub> =                                              | 10.3 m of water |        |  |
| h <sub>s</sub> =                                                | 4 m of water    |        |  |
| h <sub>d</sub> =                                                | 30 m of water   |        |  |

| Crank radius r = (L/2)                                      | 12.5 cm                      | 0.13 m |
|-------------------------------------------------------------|------------------------------|--------|
| Angular velocity $\omega = (2\pi N/60)$                     | 3.77 rad/s                   |        |
| Area of plunger Ap= $\pi/4*d_b^2$                           | 0.01227 <b>m<sup>2</sup></b> |        |
| Area of suction and delivery pipe $A_s = A_d = \pi/4*d_s^3$ | 0.00283 <b>m<sup>3</sup></b> |        |

| Considering suction stroke:                                                       |                            | Pressure=γh (Pa, N/m <sup>2</sup> )    |
|-----------------------------------------------------------------------------------|----------------------------|----------------------------------------|
| Accleration head $h_{as}=I_s/g^*A_p/A_s^*\omega^2 r \cos\theta =$                 | 4.714 * cosθ               | if γ=9810                              |
| Friction head $h_{fs} = 4 f l_s / 2 g d_s * (A_p / A_s * \omega * r sin\theta)^2$ | 0.592 * sin <sup>2</sup> 0 | Pr. head 'h' (m of water)              |
|                                                                                   |                            | 1 (kgf/cm <sup>2</sup> )=10 m of water |
| At the beginning of stroke, $	heta$                                               | 0 °                        |                                        |
| h <sub>as</sub> =                                                                 | 4.71 m of water            |                                        |
|                                                                                   |                            |                                        |
| h <sub>fs</sub> =                                                                 | 0.0 m of water             |                                        |

### At the mid of stroke, $\theta$

 $h_{as} =$   $h_{fs} =$ Pressure head on the piston =  $h_{atm} - (h_s + h_{as} + h_{fs})$ 

#### At the end of stroke, $\theta$

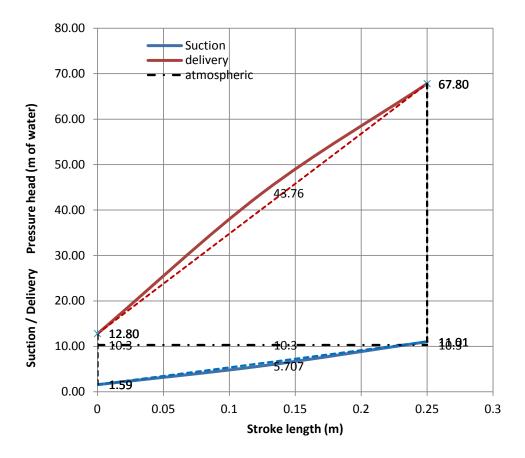
 $h_{as} =$  $h_{fs} =$ Pressure head on the piston =  $h_{atm} - (h_s + h_{as} + h_{fs})$ 

### 90°

0.0 m of water0.592 m of water5.71 m of water absolute

# 180°

-4.71 m of water0.0 m of water11.01 m of water absolute


# Considering Delivery stroke:

| Accleration head, $h_{ad} = I_d/g^*A_p/A_d^*\omega^2 rcos\theta$                                    | 27.50 * cosθ           |                                                                     |
|-----------------------------------------------------------------------------------------------------|------------------------|---------------------------------------------------------------------|
| Friction head, $h_{fd} = 4fl_d/2gd_d *(A_p/A_d*\omega * r sin\theta)^2$                             | $3.454 * sin^2 \theta$ |                                                                     |
|                                                                                                     | 51151                  |                                                                     |
| At the beginning of stroke, θ                                                                       | 0 °                    |                                                                     |
| h <sub>ad</sub> =                                                                                   | 27.50 m of water       |                                                                     |
| h <sub>fd</sub> =                                                                                   | 0.0 m of water         |                                                                     |
| Pressure head on the piston = $h_{atm}$ +( $h_{d}$ + $h_{ad}$ + $h_{fd}$ )                          | 67.80 m of water       | absolute                                                            |
|                                                                                                     | 00 <sup>8</sup>        |                                                                     |
| At the mid of stroke, θ                                                                             | 90°                    |                                                                     |
| h <sub>ad</sub> =                                                                                   | 0.0 m of water         |                                                                     |
| h <sub>fd</sub> =                                                                                   | 3.454 m of water       |                                                                     |
| Pressure head on the piston = $h_{atm} + (h_d + h_{ad} + h_{fd})$                                   | 43.76 m of water       | absolute                                                            |
| At the end of stroke, $\theta$                                                                      | 180 °                  |                                                                     |
| h <sub>ad</sub> =                                                                                   | -27.50 m of water      |                                                                     |
| h <sub>fd</sub> =                                                                                   | 0.0 m of water         |                                                                     |
| Pressure head on the piston = h <sub>atm</sub> +(h <sub>d</sub> +h <sub>ad</sub> +h <sub>fd</sub> ) | 12.80 m of water       | absolute                                                            |
| Work done and Power required                                                                        |                        |                                                                     |
| Work Done per second = $W(h_s+h_d+2/3*h_{fs}+2/3*h_{fd})$                                           |                        |                                                                     |
| Double acting pump W=2wALN/60                                                                       | 36.11 Nm/s             |                                                                     |
| Work Done per second =                                                                              | 1325.1 Nm/s            |                                                                     |
| Average work done =                                                                                 | 1325.1 W               | 1.33 kW                                                             |
| Average power required to drive the pump = $P/\eta_m$                                               | 1.77 kW                |                                                                     |
| Maximum head against which the pump has to work is                                                  | s larger of            | (h <sub>s</sub> +h <sub>fs</sub> +h <sub>d</sub> +h <sub>fd</sub> ) |
| begining position of piston=(h <sub>s</sub> +h <sub>as</sub> +h <sub>d</sub> -h <sub>ad</sub> )     | 11.21 m of water       |                                                                     |
| mid position of piston=(h <sub>s</sub> +h <sub>fs</sub> +h <sub>d</sub> +h <sub>fd</sub> )          | 38.046 m of water      |                                                                     |
| end position of piston= $(h_s+h_{as}+h_d-h_{ad})$                                                   | 56.79 m of water       |                                                                     |
| Max Head =                                                                                          | 56.79 m of water       | 56.79 checked ok                                                    |
| Power deliverd by the pump = W*(max (big, mid, end))                                                | <b>2050.47</b> W       |                                                                     |
| Power required to drive the pump = $P/\eta_m$                                                       | 2734.0 W               | 2.73 kW                                                             |

| position  | Stroke length | suction | delivery | atm |      | head agains<br>need to wo | • • |
|-----------|---------------|---------|----------|-----|------|---------------------------|-----|
| beginning | 0             | 1.59    | 12.80    | 1   | .0.3 | 11.21                     |     |
| mid       | 0.125         | 5.707   | 43.76    | 1   | .0.3 | 38.06                     |     |
| end       | 0.25          | 11.01   | 67.80    | 1   | .0.3 | 56.79                     |     |

## other lines (without friction component -- dotted)

| 0                    | 1.59  | 12.80 |
|----------------------|-------|-------|
| 0.25                 | 11.01 | 67.80 |
| other lines (vertion | cal)  |       |
| 0                    | 1.59  |       |
| 0                    | 12.80 |       |
| 0.25                 | 11.01 |       |
| 0.25                 | 67.80 |       |

