Achieving Privacy-Utility Trade-off in existing Software Systems

Saurabh Srivastava, Vinay P. Namboodiri, T.V. Prabhakar

Department of Computer Science & Engineering, IIT Kanpur, India

International Conference on Advanced Information Systems and Engineering Cairo, Egypt August 23-25, 2019

The Agenda for next 15 minutes !!

- Privacy vs Utility
 - Why it is difficult to achieve both?
 - How to choose a "sweet spot" on this "trade-off scale"?

The Agenda for next 15 minutes !!

- Privacy vs Utility
 - Why it is difficult to achieve both?
 - How to choose a "sweet spot" on this "trade-off scale"?
- The *Trade-off Model*
 - Can someone with no or very little understanding of data science make decisions about this trade-off?
 - What new "skills" would be required to do this analysis?

The Agenda for next 15 minutes !!

- Privacy vs Utility
 - Why it is difficult to achieve both?
 - How to choose a "sweet spot" on this "trade-off scale"?
- The *Trade-off Model*
 - Can someone with no or very little understanding of data science make decisions about this trade-off?
 - What new "skills" would be required to do this analysis?
- Engineering additions
 - Reducing the size of the problem space
 - Reducing the size of individual tasks

Privacy vs Utility

Motivation and understanding the problem

"Privacy" in applications using Data

- There is no "universally accepted" definition of exactly what "privacy" means
- Usually, *Privacy* is considered as the ability of an individual or an organisation to control what information about him or them gets exposed to the outside world
- Consequently, a "breach of privacy" is an event where some information about the individual or the organisation is "leaked" to someone that was not explicitly authorised
- Applications that use user data, need to make sure that user's privacy concerns are met

"Utility" in applications using Data

- Data is at the core of multiple activities in modern applications
- It is used to recommend products and services, customise content on social media, provide personalised discounts etc.
- The main idea about the *Utility* of data is extracting useful knowledge out of it, which can be applied for achieving business goals
- Applications that use user data, try to maximise the information that they can collect about their users, so that they can use it to provide better products and services

• Utility is about "finding correlations in data"

- Utility is about "finding correlations in data"
- Privacy is about "removing correlations in data"

Name	Roll Number	Department	Program	Income Range
Bob	1003	ME	ВТ	50K - 100K
Alice	1002	CSE	MS	>500K
John	1004	РНҮ	MT	100K - 350K
Mary	1005	CSE	PHD	50K - 100K
José	1006	MTH	BS	350 - 500K

	_			used	to identify
Name	Roll Number	Department	Program	Incon. financ	cially weaker
Bob	1003	ME	ВТ	50K - 100K	tudents
Alice	1002	CSE	MS	>500K	
John	1004	РНҮ	MT	100K - 350K	
Mary	1005	CSE	PHD	50K - 100K	
José	1006	MTH	BS	350 - 500K	

This data can be

			Alio	ce doesn't	
Name	Roll Number	Department	info	information to	
Bob	1003	ME	k	be public	
Alice	1002	CSE	MS	>5	ООК
John	1004	РНҮ	MT	100K	- 350K
Mary	1005	CSE	PHD	50K ·	- 100K
José	1006	MTH	BS	350 -	- 500K

- Utility is about "finding correlations in data"
- Privacy is about "removing correlations in data"
- Ways to remove "correlations"
 - Anonymise data (Alice \Rightarrow P1, Bob \Rightarrow P2 etc.)

- Utility is about "finding correlations in data"
- Privacy is about "removing correlations in data"
- Ways to remove "correlations"
 - Anonymise data (Alice \Rightarrow P1, Bob \Rightarrow P2 etc.)
 - Add "noise" (add spurious rows to column)

- Utility is about "finding correlations in data"
- Privacy is about "removing correlations in data"
- Ways to remove "correlations"
 - Anonymise data (Alice \Rightarrow P1, Bob \Rightarrow P2 etc.)
 - Add "noise" (add spurious rows to column)
 - Remove "sensitive" columns

- Utility is about "finding correlations in data"
- Privacy is about "removing correlations in data"
- Ways to remove "correlations"
 - Anonymise data (Alice \Rightarrow P1, Bob \Rightarrow P2 etc.)
 - Add "noise" (add spurious rows to column)
 - Remove "sensitive" columns (\checkmark)

Name	Roll Number	Department	Program	Income Range
Bob	1003	ME	ВТ	50K - 100K
Alice	1002	CSE	MS	>500K
John	1004	РНҮ	MT	100K - 350K
Mary	1005	CSE	PHD	50K - 100K
José	1006	MTH	BS	350 - 500K
	Department	Program	Income Range	
	ME	BT	50K - 100K	
	CSE	MS	>500K	
	PHY	MT	100K - 350K	
	CSE	PHD	50K - 100K	
	MTH	BS	350 - 500K	

Name	Roll Number	Department	Program	Income Range	
Bob	1003	ME	BT	50K - 100K	
Alice	1002	CSE	MS	>500K	
John	1004	РНҮ	MT	100K - 350K	
Mary	1005	CSE	PHD	50K - 100K	
José	1006	MTH		AV.	
			individuals and their incomes has been remove		
			incomes has be	een removed	
	Department	Program	incomes has be Income Range	een removed	
	Department ME	Program BT	incomes has be Income Range 50K - 100K	een removed	
	Department ME CSE	Program BT MS	incomes has be Income Range 50K - 100K >500K	een removed	
	Department ME CSE PHY	Program BT MS MT	incomes has be Income Range 50K - 100K >500K 100K - 350K	een removed	
	Department ME CSE PHY CSE	Program BT MS MT PHD	incomes has be Income Range 50K - 100K >500K 100K - 350K 50K - 100K	een removed	

Name	Roll Number	Department	Program	Income Range
Bob	1003	ME	ВТ	50K - 100K
Alice	1002	CSE	MS	>500K
John	1004	РНҮ	MT	100K - 350K
Mary	1005	CSE	PHD	50K - 100K
But some utility	y of the data is	МТН	BS	350 - 500K
also "lost" (e financially wea for "schol	.g. selecting aker students arships")			
	Department	Program	Income Range	
	ME	BT	50K - 100K	
	CSE	MS	>500K	
	РНҮ	MT	100K - 350K	
	CSE	PHD	50K - 100K	

- Utility is about "finding correlations in data"
- Privacy is about "removing correlations in data"
- Ways to remove "correlations"
 - Anonymise data (Alice \Rightarrow P1, Bob \Rightarrow P2 etc.)
 - Add "noise" (add spurious rows to column)
 - Remove "sensitive" columns
- Irrespective of what options we choose, the data almost always uses "some utility"

- Utility is about "finding correlations in data"
- Privacy is about "removing correlations in data"
- Ways to remove "correlations"
 - Anonymise data (Alice \Rightarrow P1, Bob \Rightarrow P2 etc.)
 - Add "noise" (add spurious rows to column)
 - Remove "sensitive" columns
- Irrespective of what options we choose, the data almost always uses "some utility"
- So, there is a *trade-off* here, and we need to find a mid-way out of it !

The Trade-off Model

Understanding a simple solution to the problem

Pruning the data to achieve Privacy

• Let us assume we have a table with *n* attributes and *m* rows

Pruning the data to achieve Privacy

- Let us assume we have a table with *n* attributes and *m* rows
- Also, there are some set of attributes which, if present together in a table, can result in a potential breach of privacy
 - Last example (Name, Income Range), (Roll Number, Income Range) etc.

Pruning the data to achieve Privacy

- Let us assume we have a table with *n* attributes and *m* rows
- Also, there are some set of attributes which, if present together in a table, can result in a potential breach of privacy
 - Last example (Name, Income Range), (Roll Number, Income Range) etc.
- If we divide this table into multiple *partitions*, with each partition containing some attributes of the table, we can essentially remove some instances of possible privacy breach
- We cater to a class of applications, which use data for *classification* purposes so the class attribute (not counted in *n*) is copied to all partitions, to make sure that the partition is useful for classification

age	workclass	marital-status	race	class
39	State-gov	Never-married	White	<=50K
49	Self-emp-inc	Married-civ-spouse	White	${>}50K$
28	Private	Married-civ-spouse	Other	<=50K
35	Private	Divorced	White	${>}50K$
38	Private	Divorced	White	<=50K
53	Local-gov	Never-married	White	<=50K
28	Private	Married-civ-spouse	Black	<=50K
37	Private	Married-civ-spouse	Black	${>}50K$
37	Private	Married-civ-spouse	White	<=50K
49	Private	Married-spouse-absent	Black	<=50K
38	Federal-gov	Married-civ-spouse	White	${>}50K$
42	Private	Married-civ-spouse	White	${>}50K$

Table 1. An excerpt from the UCI Adult dataset

				200	workelass	class
age	${f marital-status}$	race	class	age	workciass	Ciuss
				53	Local-gov	< -50K
35	Divorced	White	> 50 K	00	Docal-gov	<-50M
20	Dimensed		< 50V	28	Private	<=50K
38	Divorced	wnite	<=30K	35	Private	>50K
53	Never-married	White	<=50K	00	TIVAUC	200M
40		D	COV	37	Private	<=50K
49	Married-civ-spouse	Black	<=30K	30	State rov	<-50K
42	Married-civ-spouse	White	>50K	39	State-gov	<-50M
14	married erv spouse	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	> 0011	49	Private	<=50K

race	class	age	class
White	< -50K	37	> 50 K
Black	<-50K	49	> 50 K
White	$\leq -50K$	38	<=50K
Other	>50K	42	> 50 K
Other	<=00N	38	> 50 K

Figure 1. Some partitions of the dataset in Table 1

• Let us assume that we would like to use a partition of the original data for the classification task, instead of the whole data

- Let us assume that we would like to use a partition of the original data for the classification task, instead of the whole data
- The question is Which partition to use? More specifically,
 - What sized partition is "good enough"? Since Partition Size $\in [1, n]$
 - Among partitions of the same size, how choosing one is different from other?

- Let us assume that we would like to use a partition of the original data for the classification task, instead of the whole data
- The question is Which partition to use? More specifically,
 - What sized partition is "good enough"? Since Partition Size $\in [1, n]$
 - Among partitions of the same size, how choosing one is different from other?
- We can use statistical analysis with sophisticated metrics to analyse privacy and utility of each partition, and pick a partition

- Let us assume that we would like to use a partition of the original data for the classification task, instead of the whole data
- The question is Which partition to use? More specifically,
 - What sized partition is "good enough"? Since Partition Size $\in [1, n]$
 - Among partitions of the same size, how choosing one is different from other?
- We can use statistical analysis with sophisticated metrics to analyse privacy and utility of each partition, and pick a partition
- Or, we can attempt an engineering solution via an experimental setup, that doesn't require in-depth statistical knowledge

- Let us assume that we would like to use a partition of the original data for the classification task, instead of the whole data
- The question is Which partition to use? More specifically,
 - What sized partition is "good enough"? Since Partition Size $\in [1, n]$
 - Among partitions of the same size, how choosing one is different from other?
- We can use statistical analysis with sophisticated metrics to analyse privacy and utility of each partition, and pick a partition
- Or, we can attempt an engineering solution via an experimental setup, that doesn't require in-depth statistical knowledge (√)

Trade-off Model

- Input
 - A Table *T*, with *n* attributes and *m* rows; additionally, the table has another attribute called the *class* attribute (making total columns *n*+1)
 - Partition Size, *p* : An integer between 1 and *n*
 - Classification Objective, O: The technique to be used for classification of data
 - Privacy Exceptions, *PE*: A possibly empty list of attribute combinations, which may
 pose a risk to privacy; the size of a combination can be at max *p*
 - Utility Exceptions, UE : A possible empty list of attribute combinations, which are desirable in the output partitions; the size of a combination can be at max p
 - Optional metric *M* to sort the results (e.g. Accuracy, False Positive Rate etc.)
- Output
 - A list of partitions, *P*, sorted by *M*; each partition contains *p* attributes (+ *class*)
 - A list of values for *M*, corresponding to each partition in *P*

Input to the model

partition size = 2; privacy exceptions = { (age, workclass) }; learning objective = Classification(NaiveBayes);

Output from the model

{age, race}
{age, marital-status}
{workclass, marital-status}
{marital-status, race}
{workclass, race}

58.33333333333333336% (√) 33.3333333333333336% 33.333333333333336% 25.0%

Overall methodology

- Step 1: Create a list of partitions, possible for a given partition size, that do not contain any combinations supplied in *PE*
 - For example, for p = 2 : [{age, marital-status}, {age, race}, {workclass, marital-status}, {workclass, race}, {marital-status, race}]
- Step 2: Invoke a task, applying *O* over all selected partitions, and note down the value of *M* produced by each task
 - For example, for *Naïve Bayes Classification* and Metric Classification Accuracy, compute and store entries like [{*age, marital-status*} ⇒ *33.333333*%]
- Step 3: Sort the list of partitions, by their corresponding M values, to produce P

Engineering additions

Building a *practical* prototype for the model

Reducing the number of possible partitions

- The function that actually determines the number of partitions is the *Combinations function*, *C*(*n*, *p*)
 - For *n* = 25, *p* = 10, the number of possible partitions is **3,268,760** !!!
- Clearly, we cannot run the classification tasks for all these partitions in a practical solution
- So, we added another "engineering" parameter to the model called the Vertical Expense, v ∈ (0, 1]
- It defines the proportion of possible partitions, that should be tried out for experiments
 - For example (v = 0.5) \Rightarrow "try only 50% of possible partitions"

Fastening the individual classification tasks

- The experiments we perform are *indicative* i.e. they are best-effort approximations to a larger, complex problem
- If the original dataset contains a lot of rows (say a million !!), running so many classification tasks will be extremely time consuming
- Similar to v, that can reduce the number of partitions that will be tried out, we define another engineering parameter, called the Horizontal Expense h ∈ (0, 1]
- It defines the proportion of rows from the original dataset to be used in individual classification tasks
 - For example $(h = 0.1) \Rightarrow$ "use any 10% of the rows for individual tasks"

Effects of changing Horizontal Expense

(a) Varying horizontal expense, keeping vertical expense constant

Effects of changing Vertical Expense

(b) Varying vertical expense, keeping horizontal expense constant

Thanks for your time !!

Questions?