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• Privacy vs Utility
• Why it is difficult to achieve both?

• How to choose a "sweet spot" on this "trade-off scale"?

• The Trade-off Model
• Can someone with no or very little understanding of data science make 

decisions about this trade-off?

• What new "skills" would be required to do this analysis?

• Engineering additions
• Reducing the size of the problem space

• Reducing the size of individual tasks



Privacy vs Utility
Motivation and understanding the problem



"Privacy" in applications using Data

• There is no "universally accepted" definition of exactly what "privacy" 
means

• Usually, Privacy is considered as the ability of an individual or an 
organisation to control what information about him or them gets 
exposed to the outside world

• Consequently, a "breach of privacy" is an event where some 
information about the individual or the organisation is "leaked" to 
someone that was not explicitly authorised

• Applications that use user data, need to make sure that user's privacy 
concerns are met



"Utility" in applications using Data

• Data is at the core of multiple activities in modern applications

• It is used to recommend products and services, customise content on 
social media, provide personalised discounts etc.

• The main idea about the Utility of data is extracting useful knowledge 
out of it, which can be applied for achieving business goals

• Applications that use user data, try to maximise the information that 
they can collect about their users, so that they can use it to provide 
better products and services
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• Privacy is about "removing correlations in data"

• Ways to remove "correlations"
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• Add "noise" (add spurious rows to column)

• Remove "sensitive" columns (✔)
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Name Roll Number Department Program Income Range

Bob 1003 ME BT 50K - 100K

Alice 1002 CSE MS >500K

John 1004 PHY MT 100K - 350K

Mary 1005 CSE PHD 50K - 100K
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Department Program Income Range
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CSE MS >500K

PHY MT 100K - 350K

CSE PHD 50K - 100K

MTH BS 350 - 500K

But some utility of the data is 
also "lost" (e.g. selecting 

financially weaker students 
for "scholarships")
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Achieving Privacy as well as Utility

• Utility is about "finding correlations in data"

• Privacy is about "removing correlations in data"

• Ways to remove "correlations"
• Anonymise data ( Alice⇒ P1, Bob⇒ P2 etc.)

• Add "noise" (add spurious rows to column)

• Remove "sensitive" columns

• Irrespective of what options we choose, the data almost always uses 
"some utility"

• So, there is a trade-off here, and we need to find a mid-way out of it !



The Trade-off Model
Understanding a simple solution to the problem
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Pruning the data to achieve Privacy

• Let us assume we have a table with n attributes and m rows

• Also, there are some set of attributes which, if present together in a 
table, can result in a potential breach of privacy
• Last example – (Name, Income Range), (Roll Number, Income Range) etc.

• If we divide this table into multiple partitions, with each partition 
containing some attributes of the table, we can essentially remove 
some instances of possible privacy breach

• We cater to a class of applications, which use data for classification
purposes – so the class attribute (not counted in n) is copied to all 
partitions, to make sure that the partition is useful for classification
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Picking a partition to use

• Let us assume that we would like to use a partition of the original 
data for the classification task, instead of the whole data

• The question is – Which partition to use? More specifically,
• What sized partition is "good enough"? Since Partition Size ∈ [1, n]

• Among partitions of the same size, how choosing one is different from other?

• We can use statistical analysis with sophisticated metrics to analyse 
privacy and utility of each partition, and pick a partition

• Or, we can attempt an engineering solution via an experimental 
setup, that doesn't require in-depth statistical knowledge (✔)



Trade-off Model

• Input
• A Table T, with n attributes and m rows; additionally, the table has another attribute 

called the class attribute (making total columns n+1)
• Partition Size, p : An integer between 1 and n
• Classification Objective, O : The technique to be used for classification of data
• Privacy Exceptions, PE : A possibly empty list of attribute combinations, which may 

pose a risk to privacy; the size of a combination can be at max p
• Utility Exceptions, UE : A possible empty list of attribute combinations, which are 

desirable in the output partitions; the size of a combination can be at max p
• Optional metric M to sort the results (e.g. Accuracy, False Positive Rate etc.)

• Output
• A list of partitions, P, sorted by M; each partition contains p attributes (+ class)
• A list of values for M, corresponding to each partition in P



Input to the model

Output from the model

(✔)



Overall methodology

• Step 1: Create a list of partitions, possible for a given partition size, 
that do not contain any combinations supplied in PE
• For example, for p = 2 : [ {age, marital-status}, {age, race}, 

{workclass, marital-status}, {workclass, race}, {marital-status, race} ]

• Step 2: Invoke a task, applying O over all selected partitions, and note 
down the value of M produced by each task
• For example, for Naïve Bayes Classification and Metric Classification Accuracy, 

compute and store entries like [ {age, marital-status}⇒ 33.333333% ]

• Step 3: Sort the list of partitions, by their corresponding M values, to 
produce P



Engineering additions
Building a practical prototype for the model



Reducing the number of possible partitions

• The function that actually determines the number of partitions is the 
Combinations function, C(n, p)
• For n = 25, p = 10, the number of possible partitions is 3,268,760 !!!

• Clearly, we cannot run the classification tasks for all these partitions 
in a practical solution

• So, we added another "engineering" parameter to the model – called 
the Vertical Expense, v ∈ (0, 1]

• It defines the proportion of possible partitions, that should be tried 
out for experiments
• For example (v = 0.5)⇒ "try only 50% of possible partitions"



Fastening the individual classification tasks

• The experiments we perform are indicative - i.e. they are best-effort 
approximations to a larger, complex problem

• If the original dataset contains a lot of rows (say a million !!), running 
so many classification tasks will be extremely time consuming

• Similar to v, that can reduce the number of partitions that will be 
tried out, we define another engineering parameter, called the 
Horizontal Expense h ∈ (0, 1]

• It defines the proportion of rows from the original dataset to be used 
in individual classification tasks
• For example (h = 0.1)⇒ "use any 10% of the rows for individual tasks"



Effects of changing Horizontal Expense



Effects of changing Vertical Expense



Thanks for your time !!
Questions?


