
A Reference Architecture for 
Applications with 

Conversational Components

Saurabh Srivastava, T.V. Prabhakar
Department of Computer Science & Engineering, IIT Kanpur, India

10th IEEE International Conference on Software Engineering and Service
Beijing, China

October 18-20, 2019



Agenda

• Introduction
• Applications with Conversational Interfaces
• Issues with Conversational Interfaces

• Reference Architecture for such applications
• Major components
• Common Variation Points

• Examples of Concrete Architectures
• Using Google's Dialogflow
• Using IBM's Watson Assistant

• Summary



Introduction



Conversational Interfaces

• User-interfaces involving communication through Natural Language 
phrases, say in English or Mandarin are becoming fairly common
• The conversation could be textual, i.e. "typed in a textbox", or it could 

be through speech, i.e. "spoken by a synthesised voice"
• The idea is to allow user to express her intentions in a language she is 

already familiar with
• These mechanisms to interact with a system are called Conversational 

Interfaces
• The colloqiual term for these interfaces is Chatbots



Example of a
Conversational interface -
Lufthansa Airlines Chatbot
Over Facebook Messenger



Issues with Conversational Interfaces (1/3)

• Core NLP Issues
• Processing Natural Languages is hard, we still haven't reached the 100% 

success rate !!
• This means models, no matter how accurate, can still make mistakes
• Often, these mistakes cannot be predicted beforehand
• This adds a lot of "uncertainity" when adding these interfaces to systems
• Common issues: converting speech to text and vice 

versa, understanding sarcasm, word sense disambiguation etc.



Issues with Conversational Interfaces (2/3)

• Expectations from a human-like machine
• Attempting to be "human-like" may have unexpected consequences
• The user assumes that the system has answers to questions which may be 

common knowledge for humans, but not for a machine
• Example: "How is the weather outside?"
• Finding out if a question is "answerable" or "not" with the given amount of 

data is a problem in itself



Issues with Conversational Interfaces (3/3)

• Operational problems
• Building these interfaces require building Natural Language models
• These models require a lot of example user queries
• Even if such large amount of data is actually available, tuning the models to 

cover all possible types of user queries is not possible
• Commercial platforms which are often used to build these models (like 

Google's Dialogflow or IBM's Watson Assistant), usually keep the models 
"blackboxed"



Reference Architecture



Workflow

• A typical workflow for an application with a conversational interface:
• User enters a query, e.g. "What is the current price for apples"?
• The chatbot core, contains business logic to find out the "intent" of the user 

from the supplied query
• For example, here the intent could be fruit_price_query
• The chatbot core also has a mechanism to find out any "parameters" that the 

query may have, e.g. here the value for fruit_name parameter is apple
• The chatbot then looks for a way to "fulfil" this query – it may involve 

performing an external "action", such as calling an internal API
• It may need some context, like user's location, which may have been provided 

during the conversational "flow" through previous queries
• Finally, the chatbot prepares and either shows or "speaks" the response back



A Reference Architecture for applications with a conversational interface



Major Components in the Architecture

• Intent Classifier
• This component is responsible for categorising a user query into one of the 

defined "categories"
• For example, for a store that sells fruits, a user query could be categorised as 

fruit_price_enquiry (a query asking for the price of a particular fruit), 
store_address_enquiry (a query about the location of the store within the 
city), fruit_availability_enquiry (a query about availability of a particular fruit) 
etc.
• These categories are pre-defined by the chatbot developer, with some 

examples of each query type



Major Components in the Architecture

• Parameter Extractor
• This component is responsible for finding instances of real-world values in the 

user query
• For example, for a store that sells fruits, to answer a query about the price of 

a fruit, it needs the value of the Fruit (name of the fruit) parameter, e.g. 
"apple", "guava" etc.
• Similar to intents, parameters are also pre-defined by the chatbot developer



Major Components in the Architecture

• Fulfilments
• Fulfilments are the code fragments executed for "fulfilling" a user query
• This essentially involves performing any processing tasks in the background, 

like running SQL queries or calling external APIs

• Actions
• Actions are any tasks that can produce an effect in the "outside" world
• For instance, "addition of a reminder to user's calendar" or "sending a mail on 

behalf of the user"
• Actions are triggered as part of some fulfilments



Major Components in the Architecture

• Voice-to-Text
• All the models are built to work over "textual" inputs, and provide "textual" 

outputs
• If the user query is in speech form, a component is required to transcribe it in 

text form before supplying it to the model

• Text-to-Voice
• If the user is expecting the response in audio format, a component must 

produce the same, from the output generated by the model
• A system voice is required to synthesis this audio clip



Major Components in the Architecture

• Response Generator
• Prepares a response for a given user query
• The response could be an answer to the user's question, or a follow-up 

question (e.g. to get the value for a parameter, if it was not supplied in the 
original query)
• The response can either be generated "internally" by the chatbot, by using a 

pre-defined template, or, it can be directly sent from the respective 
fulfilment, which in turn, may have been generated "externally"



Major Components in the Architecture
• Flow Manager
• How does these two conversations differ from each other?

• Answer – Flow Management (keeping track of previous context, and changing 
the response based on that)



Common points of Variations

• Voice Utils
• The Voice-to-Text and Voice-to-Text utilities are not required to be a part of the 

system, if the built chatbot supports only text
• These tasks can be delegated to an external service or component, and invoked 

through API calls
• Fulfilments

• The fulfilment code can be written in multiple technologies
• The location of the code can also vary – it can be a part of the system itself, or, it 

could be invoked through API calls
• Flow Management

• Flow Management is a "nice-to-have" feature
• For some use cases, it may not even be required



Concrete Architectures
Built using Commercial Chatbot Development platforms



Chatbots with Dialogflow and Watson Assistant

Application built with Dialogflow Application built with Watson Assistant



Chatbots with Dialogflow and Watson Assistant

Application built with Dialogflow Application built with Watson Assistant



Chatbots with Dialogflow and Watson Assistant

Application built with Dialogflow Application built with Watson Assistant

Internal vs External Voice Utils



Chatbots with Dialogflow and Watson Assistant

Application built with Dialogflow Application built with Watson Assistant



Chatbots with Dialogflow and Watson Assistant

Application built with Dialogflow Application built with Watson Assistant

Single vs Multiple fulfilment hooks



Chatbots with Dialogflow and Watson Assistant

Application built with Dialogflow Application built with Watson Assistant

Implicit vs Explicit Flow Management



In a nutshell

• We presented a Reference Architecture for applications with 
conversational interfaces
• We showed the variation points in the architecture, which can yield 

different concrete architectures
• We showed concrete architectures of two applications, built using 

two commercial chatbot-building platforms – Google's Dialogflow and 
IBM's Watson Assistant
• We showed the variations in the application's architecture, in the 

above two cases



Thank You !!


