
Introduction to OpenStack

Saurabh Srivastava

Department of Computer Sc. & Engg.

IIT Kanpur

Day 1, Session 2
Two Days National Level Workshop

on
“Cloud Computing & Big Data”

13-14th December, 2016
MMCOE, Pune

What lies ahead….

• Recap – What we covered in previous session

• Start the toy installation – it’ll take a while !

• Browsing through OpenStack components

• Explore the toy OpenStack dashboard

RECAP
What we already know

Recap

• Virtualisation is a process where we produce a
virtualised form of a physical entity, such as a
machine or a network

• We saw how you can create a Virtual Machine
on your own laptop using a tool like Virtualbox

• Virtualisation helps in consolidating resources,
hence improving overall hardware utilisation

• A layer of virtualised resources is the
backbone of any cloud environment

Recap

• We talked about the different types of cloud
settings – Public/Private/Hybrid and
IaaS/PaaS/SaaS

• We briefly covered Amazon Web Services

• We discussed the common services AWS
implements – such as compute, storage,
identity, networking etc.

THE “TOY” CLOUD
Let’s build something tangible !

The “toy” cloud

• Can we build a “cloud” of our own to get a
glimpse of what happens in the background?

• Yes – we can use some tools to build a “Private
Cloud” for our use

• Some of the options include OpenStack,
OpenNebula, Eucalyptus etc.

• We’ll cover OpenStack in this session

The “toy” cloud

• Installing OpenStack from the scratch could be
tedious – we’ll cover all its components in the
session

• We can use DevStack though, to come up with
an experimental cloud to get a feel of how
OpenStack looks like

• DevStack can create a working version of
OpenStack for evaluation purposes in less
than an hour

The “toy” cloud

• We’ll start the installation first

• By the time it finishes, we would have covered
the basics of OpenStack

• We’ll then browse through the OpenStack
installation to get a feel of how an actual
cloud looks like

DevStack

• A word about DevStack before we start the
installation

• DevStack is supposed to provide a testing
environment for developers as well as a
means to try out OpenStack

• Although DevStack can be used to try out a
variety of OpenStack deployments, the stack
needs to be rebuilt every time the machine is
rebooted

DevStack

• DevStack can be pulled from a Git repository
https://git.openstack.org/openstack-

dev/devstack

• It then needs to be given a config file, called
local.conf

• There are templates available online for this
file pertaining to different types of installation

• We can then call the DevStack script, stack.sh
to start the installation

Let’s start the demo now

We’ll then see exactly what is being
installed by this script!

OPENSTACK - A BIRD’S-EYE VIEW
What does the big picture look like?

Source: OpenStack Installation for Ubuntu 14.04

OpenStack Service Name Purpose

Keystone Identity Service

Glance Store images to boot VMs

Nova Compute capabilities

Neutron Networking Infrastructure

Cinder Block Storage

Swift Object Storage

Ceilometer Metering Services

Heat Orchestration Templates and API access

Horizon Dashboard

Source: OpenStack Installation for Ubuntu 14.04

OpenStack Service Name Purpose Node

Keystone Identity Service Controller

Glance Store images to boot VMs Controller

Nova Compute capabilities Compute, Controller

Neutron Networking Infrastructure Network, Compute,
Controller

Cinder Block Storage Block Storage, Controller

Swift Object Storage Object Storage, Controller

Ceilometer Metering Services Compute, Block Storage,
Object Storage, Controller

Heat Orchestration Templates
and API access

Controller

Horizon Dashboard Controller

Source: OpenStack Installation for Ubuntu 14.04

Network Purpose

Management Network Used for cloud administration

Tunnel Network Used for tunnelling traffic between VMs

External Network Used for carrying traffic in and out of the
external world

Storage Network A dedicated network to carry storage
related traffic

OPENSTACK COMPONENTS
How the small pieces fit in the big picture?

Keystone

• If you are installing OpenStack manually, the
first step is to get a service that can act as the
guardian of all others

• Keystone performs the job of authenticating
and authorising users in an OpenStack cloud

• It also acts like a template for the services to
advertise their endpoints

Keystone

• A Service is an OpenStack component that
performs a specialised task
– For example, the nova service performs compute

related tasks

– The glance service acts as a warehouse for storing
machine images

– Even keystone itself is a service

• A Service Endpoint is an address usually a URL
(e.g. http://controller:5000/v2.0), through which
a service can be contacted

Keystone

• A User represents an individual, group of
individuals or even a service

• Users have credentials

– The identity service verifies a user against these
credentials and authorise usage of services and
resources

• Users have assigned roles in projects

– Roles are a set of capabilities

Keystone

• A Project or a Tenant is a container of users
and virtual resources
– Tenants consist of VMs, Networks, Images,

Storage Volumes, Users etc.

– A user has a specific role in a tenant

• A Project can have multiple users, a user can
be part of multiple projects
– Although, the same user can have different roles

in different projects

Keystone

• All other services in OpenStack depend on
keystone for discovering each other

• The public URL of keystone is the starting
point for all operations in OpenStack

• With an Identity Service in place, we can now
think about putting up other fragments of the
puzzle

Glance

• Probably the most commonly used virtual
resource in the cloud is a Virtual Machine

• Unlike their physical counterparts, Virtual
Machines are almost always created from a
template

• Glance is the Image hosting service of an
OpenStack cloud

Glance

• Glance can be configured to store and retrieve
images from a variety of sources

• In the most basic setup, the images are stored
directly in a specified directly as files

• Glance can also be configured to use an
Object-Store service (swift) or a Block Storage
service (cinder)
– It can even pull these images from AWS S3

buckets

Nova

• Nova is the component responsible for
providing the compute facilities in an
OpenStack cloud

• Nova is a collection of services, that run across
multiple nodes

• The controller node runs the management
part of nova, while on the compute node(s),
nova interacts with the underlying hypervisor
to manage Virtual Machines

Nova

• The nova metadata service provide
mechanisms to store and retrieve instance
(VM) related metadata

• The most common example of the metadata
includes the key to enable password-less
access for the user

• When a machine boots up, a script contacts
the metadata service to get this info

Nova

• The nova compute service is the core compute
facility, that interacts with hypervisors to
create and terminate instances

• The nova conductor service acts like an agent
of the compute service

• It takes up requests for spanning VMs, decides
on which compute node (in general there are
more than one) the VM is to be spawned

Nova

• There are other services provided by the nova
component (such as nova novncproxy to
support VNC based access to a spawned VM)
which aid the overall instance lifecycle

• We will launch a “toy” instance on our “toy”
cloud once the demo installation is complete !

• Nova can be considered as one of the two
heavyweights of OpenStack, the other one is
neutron

Neutron

• The most complex part of OpenStack lies
beneath the stone titled “networking”

• OpenStack provides two options for the same

• Historically, nova-network, a part of the
compute component, was also tasked with
doing the networking bit

• It is a legacy component now, considering that
the prominent reason it exists, is because
there are systems out there, still using it

Neutron

• Neutron is the current and recommended
networking component of OpenStack

• If you are starting fresh with OpenStack, use
neutron instead of nova-network

• The answers to this question on Quora can
give a brief history about how and why
neutron replaced nova-network
What's the difference between the OpenStack
Networking (neutron) and the Legacy Networking (nova-
network)?

Neutron

• OpenStack offers per-tenant networking, just
like any other common IaaS provider

• This means that we can group resources inside
a box, network them in a fashion with almost
no constraints, and can choose exactly how
the box interacts with the rest of the world

• In short, every project (or tenant) in
OpenStack is free to do custom networking,
without interfering with other projects

Project A

10.0.X.X/16

Project B Project C

10.0.X.X/16 10.0.X.X/16

Public Network

All tenants have a Private Network, possibly with same subnets

Project A

10.0.X.X/16

Project B Project C

10.0.X.X/16 10.0.X.X/16

R

Public Network

For access to the Public Network, tenants can add a Router

Project A

10.0.X.X/16

Project B Project C

10.0.X.X/16 10.0.X.X/16

R

Public Network

The VMs can then be attached Public IPs (or Floating IPs) on demand

Neutron

• This gives projects the option to use
overlapping subnets and addresses, within
their private network, without caring about
the same being used in some other project

• To provide access to some or all instances in a
project, a virtual router can be added to the
tenant, which routes traffic from inside to
outside and vice versa

Neutron

• Neutron uses several tools and plugins to do
the complicated job it is assigned

• One of the most common tool that you may
come across while configuring neutron is
Open vSwitch or OVS in short

• OVS is a virtual, multi-layered switch that
creates virtual networks, through which the
instance traffic is passed through “tunnels”

Neutron

• Remember the various networks we talked
about at the beginning?

– We’ll talk a little more about the Tunnel Network

• A VM on one physical host, may need to talk
to another VM (in the same project) located
on some other physical host

• The tunnel network can be configured to use
any of the three methods to carry this traffic

Neutron

• Virtual LAN or VLAN is the most complicated to
setup

• It is so because the actual hardware switches that
connect the nodes need to support what are
known as VLAN tags

• In this mode, the traffic of one particular virtual
network is assigned a particular tag, called a
VLAN tag

• These tags can help segregate traffic of different
projects, passing over the same physical network

Neutron

• Generic Routing Encapsulation or GRE doesn’t
necessarily involve hardware reconfiguration

• This is because GRE involves encapsulating
traffic of virtual networks in the usual packets
flowing over the physical network

• Although, the two physical hosts must have a
direct established connection between them
for GRE to work

Neutron

• While VLAN may be complicated, it doesn’t
involve any overheads, as compared to GRE

• In GRE, the encapsulation means that the actual
payload size is reduced, meaning it may take
more number of packets to send the same
amount of data

• We can attempt to ask the OS on the instance, to
reduce its MTU so that the additional overhead
doesn’t require segmentation, but the guest OS is
not bound to honour that

Neutron

• VXLAN is variant of GRE, which reduces some of
the overhead of GRE, and in some ways, act as a
trade-off between VLAN and GRE

• It is beyond our scope to compare and contrast
the three methods, but in case you wish to look a
little deeper, there is no dearth of text on the
internet to read

• Looking at this answer and the links in the same
could be a starting point:
what is the difference between GRE and VXLAN networks

Neutron

• Neutron is a complex component, that may
need a number of fine tweaks for it to work in
your physical environment

• In addition to the basic networking
infrastructure, neutron also has plugins for
providing services such as DHCP, Firewalling
and even Load Balancing

Horizon

• Horizon is OpenStack’s Dashboard

• You would have seen the Dashboard of AWS in
the previous session, the core functionalities
of the AWS dashboard can also be seen in
Horizon

• Horizon provides users a GUI to create users,
tenants, networks, routers etc.

• Most importantly, it provides an easy interface
to launch and terminate instances

Horizon

• Other features that horizon provides include
associating Floating IPs (an IP that makes a VM
directly accessible to the outside world) and
creating and managing Security Groups (rules
to allow or disallow network traffic)

• Keep in mind that the dashboard is only
pulling strings behind the scene using the
individual APIs that all the OpenStack services
expose

Cinder and Swift

• OpenStack has two components to cater to
the storage needs of a user

• Cinder is the Block storage service while Swift
is the Object storage solution of OpenStack

• The instances that are created by nova are
configured with a small amount of storage

• The storage is released as soon as the instance
is terminated (deleted)

Cinder and Swift

• If a user wishes to keep data persistent, there
are two ways to do so

• The user can create a cinder Volume and
attach it to a VM

• The VM can treat this volume similar to a new
Hard Drive, or an NFS mounted File System

• The volumes can be detached, and then
reattached later to the same VM, or other
VMs

Cinder and Swift

• The other option is to use Swift to put and get
data in an Object store, addressed by a key

• Swift uses a complex, ring based mechanism
to replicate data on multiple node, providing
higher reliability (remember the two object
storage nodes in the example architecture?)

• Although not necessary, configuring your
OpenStack cloud with at least one of the two
facilities is highly recommended

Ceilometer

• There is one more component we’ll talk about
before we start playing with our “toy” cloud

• One of the basic aspects of any cloud
environment is the ability to meter the usage
of virtual resources

• The most common example of metering usage
include calculating the amount of time an
instance is running (say for billing purposes)

Ceilometer

• Ceilometer does this part in an OpenStack
cloud

• Using ceilometer, one can configure meters,
samples and aggregate usage statistics over a
period of time

• That’ll be all all, let’s see what we’ve installed
now (hope it completed successfully !!)

Wrapping up

• It has been a long session, with lots of content

• Sorry for the sloppy slides.. filled up with
tonnes of text.. but then, OpenStack deserves
far more than what we’ve covered

• We have only given you a whiff of OpenStack,
this is just the tip of the iceberg

• It may take days, if not weeks, to get even a
moderate size OpenStack cloud to get running

Wrapping up

• If you are mulling about using OpenStack in your
institute or organisation, it is advisable no to take
the short-cut

• Use the OpenStack installation guides available
online, and follow them step-by-step, installing
and configuring one component at a time

• The latest installation guide for Ubuntu can be
found at:
OpenStack Installation Guide for Ubuntu

THANK YOU !
You’re free now… we’re done !!

