
ARCHAWARE2:

A STYLE BASED SOFTWARE

ARCHITECTURE DOCUMENTATION TOOL

A Thesis Submitted

in Partial Fulfillment of the Requirements

for the Degree of

Master of Technology

by

Saurabh Srivastava

to the

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY KANPUR

June 2011



ii



Acknowledgments

I would like to take this opportunity to express my deep sense of gratitude towards

Prof. T.V. Prabhakar, for providing his able guidance to me. Without his able guid-

ance, it would not have been possible for me to complete my thesis work.

I would also like to thank my friends Abhinav Mishra, Navjot Singh and Sumeet

Khurana, for involving themselves in healthy discussions with me, and providing me their

valuable inputs from a User’s perspective for my work.

Last but not the least, I would like to thank My parents and family, for providing

me their precious moral support, which was needed by me to complete this thesis work.

Saurabh Srivastava

Department of Computer Science and Engineering,

Indian Institute of Technology, Kanpur

iii



Contents

Abstract 1

1 Documenting Software Architecture 2

1.1 Introduction to Software Architecture . . . . . . . . . . . . . . . . . . . . . 2

1.2 Documenting the Architectures . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Architecture Documentation Tools . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 About Archaware2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.5 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Documenting Architectures with Archaware2 8

2.1 Archaware2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Creating a Module Diagram . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.2 Creating a Component Diagram . . . . . . . . . . . . . . . . . . . . 9

2.1.3 Creating a Hybrid Diagram . . . . . . . . . . . . . . . . . . . . . . . 10

2.1.4 Drawing Elements and Connections . . . . . . . . . . . . . . . . . . 10

2.1.5 Creating Custom Styles . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.6 Exporting Diagrams to Images . . . . . . . . . . . . . . . . . . . . . 11

2.1.7 Interpreting Architectural Advices . . . . . . . . . . . . . . . . . . . 12

2.2 Archaware2 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.1 Archaware2 Capabilities and Limitations . . . . . . . . . . . . . . . 12

2.2.2 Usefulness of Archaware2 . . . . . . . . . . . . . . . . . . . . . . . . 13

3 The Infrastructure 14

3.1 The Eclipse Platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 The Graphical Editing Framework . . . . . . . . . . . . . . . . . . . . . . . 15

3.3 The Draw2d Toolkit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

iv



3.4 SWT: The Standard Widget Toolkit . . . . . . . . . . . . . . . . . . . . . . 16

4 Archaware2 Architecture 18

4.1 Principle Design Decisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.1.1 Prefer Extension over Development . . . . . . . . . . . . . . . . . . . 18

4.1.2 Prefer Simplicity over Completeness . . . . . . . . . . . . . . . . . . 19

4.1.3 Use the MVC pattern . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.1.4 Starting with the Shapes Example . . . . . . . . . . . . . . . . . . . 19

4.2 Archaware2 Component Description . . . . . . . . . . . . . . . . . . . . . . 20

4.2.1 Model Component . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2.2 Figure Component . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2.3 EditPart Component . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2.4 EditPart Factory Component . . . . . . . . . . . . . . . . . . . . . . 21

4.3 Archaware2 Module Description . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.3.1 The model package . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.3.2 The parts package . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.3.3 The figures package . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.3.4 The wizards and menuandcommands packages . . . . . . . . . . . . 23

5 Archaware2 Styles 24

5.1 Introduction to Styles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.2 Archaware2 Module Styles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.2.1 The Uses Style . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.2.2 The Layered Style . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.2.3 The Data Model Style . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.3 Archaware2 Component-and-Connector Styles . . . . . . . . . . . . . . . . . 27

5.3.1 The Client/Server Style . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.3.2 The Pipe-and-Filter Style . . . . . . . . . . . . . . . . . . . . . . . . 28

5.3.3 The Publish/Subscribe Style . . . . . . . . . . . . . . . . . . . . . . . 30

5.4 Archaware2 Hybrid Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.5 Archaware2 Custom Styles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.6 Archaware2 Advices and Constraints . . . . . . . . . . . . . . . . . . . . . . 32

v



6 Archaware2 Elements and Connectors 33

6.1 Archaware2 Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.1.1 Component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.1.2 Publish/Subscribe Platform . . . . . . . . . . . . . . . . . . . . . . . 34

6.1.3 Client Component . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6.1.4 Server Component . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.1.5 Filter Component . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.1.6 Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.1.7 Layered Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.1.8 Relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.1.9 Attribute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.1.10 Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.1.11 Generic Element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.2 Archaware2 Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.2.1 Publish Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.2.2 Subscribe Connection . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.2.3 Request/Reply Connection . . . . . . . . . . . . . . . . . . . . . . . 41

6.2.4 Pipe Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.2.5 Uses Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.2.6 Services Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.2.7 Aggregation Connection . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.2.8 Specialization Connection . . . . . . . . . . . . . . . . . . . . . . . . 42

6.2.9 References Connection . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.2.10 1-1 Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.2.11 m-n Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.2.12 Generic Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

7 Archaware2 Examples 45

7.1 A Hybrid Diagram Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

7.2 Example Custom Styles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

8 Conclusion and Future Work 49

vi



List of Figures

1.1 A Layered Diagram with bridging . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2 Diamond Problem with Multiple Inheritance . . . . . . . . . . . . . . . . . 6

3.1 Model-View-Controller Architecture . . . . . . . . . . . . . . . . . . . . . . 15

3.2 The Archaware2 Components . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3 Archaware2 Advice for a Layered Diagram . . . . . . . . . . . . . . . . . . . 17

4.1 Archaware2 Component and Connector Diagram . . . . . . . . . . . . . . . 20

4.2 Archaware2 Module Diagram (Major Elements and Relationships) . . . . . 22

5.1 An Example of the Uses Style . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.2 An Example of the Layered Style . . . . . . . . . . . . . . . . . . . . . . . . 27

5.3 An Example of the Data Model Style . . . . . . . . . . . . . . . . . . . . . . 28

5.4 An Example of the Client/Server Style . . . . . . . . . . . . . . . . . . . . . 29

5.5 An Example of the Pipe-and-Filter Style . . . . . . . . . . . . . . . . . . . . 29

5.6 An Example of the Publish/Subscribe Style . . . . . . . . . . . . . . . . . . 30

6.1 Example showing: Components, Pub/Sub Platform, Publish and Subscribe

Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6.2 Example showing: Client, Server and Request/Reply Connection . . . . . . 35

6.3 Example showing: Filters and Pipe Connection . . . . . . . . . . . . . . . . 36

6.4 Example showing: Modules and Uses Connection . . . . . . . . . . . . . . . 36

6.5 Example showing: Layered Modules, Services and Uses Connections . . . . 36

6.6 Example showing: Relations, Attributes; Specialization, Aggregation, 1-1,

m-n and References Connections . . . . . . . . . . . . . . . . . . . . . . . . 37

6.7 Example showing: Database, Generic Component; Generic Connections . . 39

vii



7.1 An Example showing implementation of Multi-Tier Client Server System

using Hybrid Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

7.2 An Example of Custom Styles: The Aspects Style . . . . . . . . . . . . . . . 46

7.3 An Example of Custom Styles: The Generalization Style . . . . . . . . . . . 47

7.4 An Example of Custom Styles: The Decomposition Style . . . . . . . . . . . 47

7.5 An Example of Custom Styles: The Peer-To-Peer Style . . . . . . . . . . . 48

7.6 An Example of Custom Styles: The Shared Data Style . . . . . . . . . . . . 48

viii



List of Tables

6.1 The Component Element . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6.2 The Pub/Sub Platform Element . . . . . . . . . . . . . . . . . . . . . . . . . 34

6.3 The Client Element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6.4 The Server Element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.5 The Filter Element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.6 The Module Element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

6.7 The Layered Module Element . . . . . . . . . . . . . . . . . . . . . . . . . . 37

6.8 The Relation Element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.9 The Attribute Element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.10 The Database Element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.11 The Generic Element . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.12 The Archaware2 Note . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

6.13 The Publish Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.14 The Subscribe Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

6.15 The Request/Reply Connection . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.16 The Pipe Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.17 The Uses Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.18 The Services Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.19 The Aggregation Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.20 The Specialization Connection . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.21 The References Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.22 The 1-1 Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6.23 The m-n Connection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6.24 The Generic Unidirectional Connection . . . . . . . . . . . . . . . . . . . . 44

6.25 The Generic Bidirectional Connection . . . . . . . . . . . . . . . . . . . . . 44

ix



Dedicated to My Parents



Abstract

Archaware2 is a tool for drawing Software Architecture Diagrams (from here on, whenever

we talk about the term “Architecture” or its derived forms like “Architectural”, it implies

Software Architecture, or related to the same). It extends the already existing Archaware

tool, which provides user with the facility of drawing Architectural Views. Archaware2

attempts a different perspective towards expressing Architectures, by providing the user

with a handful of well-known Architectural Styles, which can be extended to provide a

customized Architecture, as per the need of the user.

Informally, an Architectural Style is a set of Design Decisions, which provide a generic

methodology to design the architecture of a system. In general, an Architectural Style

is expressed with the help of a Style Template, which describes the elements used in the

style, the relationship they share, along with some constraints that should be applied while

using the style. Archaware2 provides the user the option to choose a style (current version

supports 6 styles) to start the Architecture drawing. A new diagram comes up with a

small instance of the Style to start with.

Although the user is free to draw any element part of the style on the diagram, there

are certain constraints, dictated by the style template, which must be followed. Because of

this, Archaware2 does not allow certain relationships to be drawn, in case; the relationship

violates the basic premise of the style. For example, if a certain relationship is fixed to

have certain types of components as their source and target, an attempt to draw the

relationship involving other components will not be allowed.

Archaware2 also provides Architectural Advices and Warnings to a user, when the user

chooses to save a diagram. For example, if there is a loop between the components, the

user is warned about the same and given the opportunity to rectify it, in case there’s a

mistake. It also provides the user with some advice, if the diagram is not properly aligned

with the Good Architectural Practices.

1



Chapter 1

Documenting Software

Architecture

In this chapter, we talk about what is Software Architecture, and how do we document

it. Section 1.1 introduces the concept of Software Architecture. The next section talks

about ways of Documenting Architectures (Section 1.2). We then discuss some of the

currently available tools for documenting architectures, including Archaware version 1.0

(Section 1.3). It is followed by a discussion on Archaware2 in brief Section 1.4. Finally,

we show how this thesis is organized in Section 1.5.

1.1 Introduction to Software Architecture

There is still no textbook definition of the term Software Architecture. The Software Engi-

neering Institute’s website[1], provides over 150 defenitions, of practitioners. As defined by

Perry and Wolf[2] can be considered a triplet of: Elements, Form and Rationale. Philippe

Kruchten[3] added to it, the perspective of non-functional attributes, and defined Software

Architecture as:

“It is the result of assembling a certain number of architectural elements in some

well-chosen forms to satisfy the major functionality and performance requirements of the

system, as well as some other, non-functional requirements such as reliability, scalability,

portability, and availability”

The Elements are the actual constituents of the system. This may include Processing

Elements, which perform some processing over the data, or the Data Elements, which

2



hold system data. They can also be Connections, which connect the other kinds of ele-

ments. Forms actually represent the options an Architect has, in choosing one element

over the other. Forms can be considered as a function which assigns weight values to the

elements, which can be used by the architect to categorize elements in categories such as

“essential element” or “decorative element”. Rationale are the constraints on relationships

between the elements. In other words, what combinations of elements are allowed in the

architecture, and what are not.

Another refined definition which perceives Architecture from the view of Principle

Design Decisions, from [4] is:

“Software architecture encompasses the set of significant decisions about the organiza-

tion of a software system.”

This definition assumes that the Architecture of a system can always be expressed as a

set of decisions, which are taken by the architect to satisfy the various constraints, keeping

in mind, the stakes of the system’s stakeholders.

1.2 Documenting the Architectures

Documenting the Architecture is as important as designing it. The architect must docu-

ment the Architecture in such a way, that it can be referred during downstream processes.

Moreover, in case the architect leaves the project, its the Documentation which acts as the

only way to understand the Architecture. In general, there are a few important aspects

of the Architecture, that an Architect should document:

1. Any Major Design approach, taken to optimize any non functional attribute. For

example, if the architect choose to use the Client/Sever approach to make the system

more scalable. These approaches can be roughly considered as Architectural Styles

or Patterns.

2. The Elements of the System, and their properties. These may be roughly considered

as Architectural Views

3. References in Architecture documents, which address the issues related to different

Stakeholders of the system.

3



One of the most commonly used method of describing the elements and their properties,

involved in a System, are Views. As the name suggests, a view is the snapshot of the system

from some angle of perception. In other words, a view generally describes certain parts of

a system. Generally, just one view is not enough to visualize the architecture of a system.

For example, one view may only show the Physical entities, such as machines, networks,

tape devices etc., involved in the system; while some other view may talk about the set of

processes and their interactions, constituting the system.

A Viewset is generally a set of views, which may be used by an architect, to describe the

whole (or at least, a major part) of the system. The Kruchten’s 4+1 Viewset[3], is an

example.

1.3 Architecture Documentation Tools

There are some dedicated tools available today for design and analysis of Software Archi-

tectures.

ArchStudio[5] is an example of the same. It defines an Architecture Description Language

of its own, called xADL. The users are provided methods to create and edit Architecture

Documents in two types of editors, XML-tree based, and Graphical.

IBM Rational Rose[6] is a general purpose graphical editor for UML. UML can also be

used to document architectures, however, their is no concept of a View in UML, and the

Architect may have to make heavy usage of Stereotyping.

Archaware1, is a View-based editor. Archaware is a tool for drawing Architectural Views

for expressing the Architecture of a Software System. The idea is to equip user with views,

with the help of which, all the aspects of the system can be described. The Kruchten’s 4

Views along with the Decision View are a common way to express a System’s static as

well as runtime behavior. Archaware allows user to draw these views, along with some

basic Component and Connector Diagrams like a Hybrid View.

Another Documentation Tool is Acme Studio[7]. Acme Studio takes a Style based ap-

proach towards design of Software Architecture. It allows user to create their own families

of Styles, with a support for Armani constraint language for expressing constraints appli-

cable to a particular Style. It provides a comprehensive, (and hence, complex) interface

to design Architectures.

1 Whenever we say Archaware, we mean Archaware version 1.0

4



1.4 About Archaware2

Just like Acme Studio, Archaware2 also aims to be a Style-based editor. Archaware2 aims

to be simpler, and hence, does not provide tweaking to a great extent. A simple example

is, defining of Ports and Roles. If the Architecture Design Tool provides options to the

user to define these details, it increases the level of customization, but at the same time,

increases the complexity of the overall design process (as in some cases, the behaviour of

Roles and Ports may already be well defined, and a Connection is enough to express the

idea).

The other approach, with which Archaware2 is developed, is to plug-in, Good Ar-

chitectural Practices in the designing of Architectures. There exist a number of Good

Architectural Practices in the field of Software Architecture, which although are not ex-

plicitly expressed, but are tried and tested ways to achieve certain quality attributes (or

to avoid certain pitfalls), more often than not.

A simple example of a Good Architectural Practice is about Layering. One of the

important purposes of using a layered approach to architecture design is to provide in-

dependence to a Higher Layer with respect to Lower layers. If however, the layers are

bridged, as shown in Figure 1.1, i.e. a higher layer uses the services of a layer which is not

immediately below it in the layered structure, then, we actually sacrifice the modifiability

of the higher layer to a certain extent.

Another example could be from the domain of Object Oriented Design Methodology.

Although Inheritance was a phenomenal concept when first conceived, it may not be a

great idea to use Multiple Inheritance. Multiple Inheritance may sometime result in a

problem known as The Diamond Problem (Figure 1.2). Such a problem may affect the

maintainability of the system.

Archaware2 is designed keeping in mind, that a Style may have similar architectural

practices associated with it, and it will be useful, if the user is informed about the same,

if the practice is not followed in his diagrams2.

2 We use the word diagram here to represent any box-and-line documentation of Architecture

5



Figure 1.1: A Layered Diagram with bridging

Figure 1.2: Diamond Problem with Multiple Inheritance

6



1.5 Thesis Outline

The thesis is organized in these chapters:

Chapter 2 describes Archaware2 from a User’s Perspective. It shows how Archaware2 can

be used for documenting Software Architecture, its utility and limitations.

Chapter 3 then describes the technologies used in the development of Archaware2.

Chapter 4 discusses Archaware2 from an Architect’s Perspective. It talks about the Prin-

ciple Design Decisions taken while architecting the system. It also explains Module and

Component Diagrams of Archaware2.

Chapter 5 and Chapter 6 describes Archaware2 in detail, from a Developer’s Perspective.

Chapter 7 gives an overview of in-built Examples in Archaware2, meant for guiding user

on usage of the system.

Finally, we present the Conclusion and suggest Future Enhancements in the system in

Chapter 8.

7



Chapter 2

Documenting Architectures with

Archaware2

In this chapter, we’ll discuss in short, the features of Archaware2. We’ll discuss the scope

of our work, the possibilities and the limitations. We will start by discussing the major

functionalities of the System in Section 2.1, and conclude with a discussion on its utility

and limitations, as well as the intended audience (Section 2.2).

2.1 Archaware2 Features

In this section, we’ll discuss how to create Architectural Diagrams in Archaware2. In

general, every Architecture needs at least two different diagrams to document it. A Module

Diagram describes the basic implementation units, which will collaborate together, to form

the System. A Component Diagram depicts the major runtime entities, like processes or

threads, which will coordinate with each other, to provide the required functionalities, and

quality attributes. It may also be required to use an Allocation Diagram, which makes

sense if the system spans more than one physical machines (otherwise, the Allocation

Diagram is said to be trivial). Archaware2 currently supports only Module and C&C

Styles.

2.1.1 Creating a Module Diagram

As already mentioned, Archaware2 takes a Style based approach towards Architecture

Documentations. Module Diagrams can be created using the Module Styles provided

8



in Archaware2. Currently 3 Module Styles are supported (Refer to Chapter 5 for more

details). Here are the steps to design a new Moduke Diagram in Archaware2:

a). Click on ‘New’ in the File Menu.

b). Select the option for Creating a new Module Diagram, under the Archaware2 Diagram

Category.

c). Select one of the Styles, and input the File Name and Location, and click Finish.

d). A new Diagram is created, with a sample instance of the Style chosen. The user can

import the sample instances of this Style, as many times as needed, or create the

diagram with the help of the Palette provided on the right side of the Diagram.

e). Once done, the user can save it as a Diagram, export it as image, or convert it to a

Custom Style (We’ll discuss utility of Custom Styles in a short while).

We’ll discuss the Module Styles in detail in Chapter 5. Examples of some Module Diagrams

are shown in Figure 5.1, Figure 5.2 and Figure 5.3.

2.1.2 Creating a Component Diagram

Component Diagrams can be created using the C&C Styles provided in Archaware2. Cur-

rently 3 C&C Styles are supported (Refer to Chapter 5 for more details). Here are the

steps to design a new Component Diagram in Archaware2:

a). Click on ‘New’ in the File Menu.

b). Select the option for Creating a new C&C Diagram, under the Archaware2 Diagram

Category.

c). Select one of the Styles, and input the File Name and Location, and click Finish.

d). A new Diagram is created, with a sample instance of the Style chosen. The user can

import the sample instances of this Style, as many times as needed, or create the

diagram with the help of the Palette provided on the right side of the Diagram.

e). Once done, the user can save it as a Diagram, export it as image, or convert it to a

Custom Style.

We’ll discuss the Component Styles in detail in Chapter 5. Examples of some Component

Diagrams are shown in Figure 5.4, Figure 5.5 and Figure 5.6.

9



2.1.3 Creating a Hybrid Diagram

Sometimes, the Elements and Connections provided in any one of the styles, may not be

enough for the User, to document his Architecture. In such a case, the User can choose

to create a Hybrid Diagram. A Hybrid Diagram provides access to all the Elements

and Connections supported in Archaware2, including both the C&C and Module Styles1.

There are some extra elements and connections, provided for even greater Customization

needs (Discussed in detail in Chapter 5). The steps to create a Hybrid Diagram are:

a). Click on ‘New’ in the File Menu.

b). Select the option for Creating a new Hybrid Diagram, under the Archaware2 Diagram

Category.

c). Input the File Name and Location, and click Finish.

d). A new Hybrid Diagram is created. The User can import any number of instances of

all available Styles. He can add elements and connections from the Full Palette on the

right.

e). A Custom Style can be created from, or imported in the Current Diagram. Once done,

it can be saved or exported to Image.

An example of how a Hybrid Diagram can be used to document an Architecture that

doesn’t fit in any of the available styles is shown in Figure 7.1.

2.1.4 Drawing Elements and Connections

The Elements and Connections applicable to a particular Style is shown in the Palette on

the right of the Editor.

To create a New Element, Click on the element type in the Palette, take the mouse to the

required location, click and drag it. When the mouse is released, the element is created.

To create a Connection between two elements, click on the connection, take the mouse to

the Source element, and click. Now take the mouse to the target element and click again,

the connection is created2.

User can then change properties of the elements and connections (like element name or

1 WARNING: The user must be careful, not to mix up elements of one genre (Modules) with that of
other (Components)

2 Only if the connection is legal between the source and target element

10



connection cardinality), by clicking/double clicking on them. User can also reconnect a

connection, by changing either its Source or target. This can be done by clicking on either

ends of the Connection, and dragging them to the new Connection Point. The connection

is changed now3.

2.1.5 Creating Custom Styles

If the user feels that there is a recurring set of elements and connections, that occur far to

often in his Architecture Diagrams, he may be tempted to reuse them rather than creating

them every time (e.g. If the applications designed are mostly Web based, the portion of a

Browser communicating with a Web Server may be there almost in every diagram). The

user may chose to have any such abstract set, and create a Custom Style out of it. The

Steps for creating a Custom Style are:

a). Create any of the Style Diagrams; Module, C&C or Hybrid. An existing Diagram can

also be opened.

b). Draw the elements and connections needed to be stores as a Custom Style

c). Click on the “Save as Style” option in the Archaware2 Menu, enter the Style Name

and Location, and click Save.

d). The Custom Style is created and can now be loaded in other Diagram.

To load a Custom Style4:

a). Create or Open a Hybrid Diagram.

b). Click on the “Load Custom Style” option in the Archaware2 Menu, browse to the

Style file to be loaded, and click Open.

c). The Custom Style is loaded in the Current Diagram.

Some examples of Custom Styles are shown in Figure 7.2 to Figure 7.6.

2.1.6 Exporting Diagrams to Images

There is a one-click Image Export in Archaware2 for the User Diagrams. The User needs

to click the “Export to Image” icon (or the Menu item for the same in Archaware2 Menu).

3 Only if the reconnection is legal
4 NOTE: Custom Styles can only be loaded in Hybrid Diagrams

11



A dialog is shown to input export file name, file type5 and the location, and click Save.

The image of the current diagram in the editor is exported to the image file.

2.1.7 Interpreting Architectural Advices

Archaware2 warns the user whenever the created diagram, may be having a shortcoming6.

These are just advices, given to the user on the basis of a General Opinion in the field of

Software Architecture. The user is not bound to accept them. An example of a sample

warning is shown in Figure 3.3. It shows an Advice Pop-up from the Layered Style (Sub-

Section 5.2.2). The warning is shown at the time of file save operation. The user may

choose to click “Cancel” and make changes in the Diagram, or else, if its required, may

click on “Continue Saving”.

2.2 Archaware2 Scope

We now discuss the scope of Archaware2, in terms of its capabilities and limitations. We

will also discuss, who the system can benefit, and why.

2.2.1 Archaware2 Capabilities and Limitations

We can sum up the capabilities of Archaware2 as:

a). Ability to create Architecture Description Diagrams, with a Style as a Starting Point.

b). Ability to create and load custom styles, as per user needs.

c). Ability to export diagrams to Images.

d). A Paint-brush like interface, with minimal detailed inputs is provided.

On the other hand, there are certain limitations on Archaware2 as well:

a). The User Architecture may be too complex to be mapped in any one available style,

or sets of styles

b). The User may wish greater customization capabilities than provided.

c). The User may wish to have other export formats, such as XML.

5 PNG and JPEG formats supported
6The word “shortcoming” here means a fallout in general, it may be the case that User Architecture

is designed in that way only

12



2.2.2 Usefulness of Archaware2

As explained above, the system has its own pluses and minuses. Archaware2 may be

useful for documenting architectures of Small to Medium sized software. The primary

users could be students, who can use the tool, for documenting architectures of their

projects. It can help them map their architecture to a more suitably understood Style,

rather than drawing a completely random diagram. It may not be suitable for large and

complex systems, because of the limitations mentioned in above section.

13



Chapter 3

The Infrastructure

We will now discuss some of the technologies, that were instrumental in designing Ar-

chaware2. We will discuss about the Eclipse Platform in Section 3.1. The next two sec-

tions will discuss the Graphical Editing Framework (Section 3.2) and the Draw2d Toolkit

(Section 3.3). We’ll wrap it up with the Standard Widget Toolkit in Section 3.4.

3.1 The Eclipse Platform

Eclipse is an open source platform for delivering a wide range of functionality. Eclipse

Platform is developed in such a way that it can be extended in different ways, to build

new tools and platforms. This is possible by making Eclipse a collection of smaller enti-

ties, called Plug-ins, which collaborate together to form the overall environment[8]. New

functionalities can be added, or created from scratch by taking Eclipse Platform as a base,

and developing plug-ins or Rich Client Applications over it.

Archaware2 is essentially an Eclipse Plug-in, which uses functionalities of other plug-

ins and frameworks provided by the Eclipse Community. The advantage of using Eclipse

Platform over designing Archaware2 as an independent Window Application is obvious;

it provides the developer a lot of “ready to use” functionalities, which would require

significant amount of work to be recreated.

Archaware2 makes heavy usage of the Graphical Editing Framework (GEF), and Draw2d

Toolkit. We discuss them in detail in the next section. GEF provides basic support for

building Graphical Editors for plug-ins, whereas Draw2d provides basic drawing support

on top of the Eclipse Standard Widget Toolkit (SWT).

14



3.2 The Graphical Editing Framework

GEF provides a framework for designing Graphical Editors. GEF is based on the Model-

View-Controller (MVC) Architecture (Figure 3.1). The basic functionality GEF provides

is a mapping between a View and a Model, with the help of a Controller [9].

Figure 3.1: Model-View-Controller Architecture

A Model is a real world entity, which has properties that differentiates it from other

Models in its environment. For Archaware2, all Components, Connectors and Style Dia-

grams form the entities of our system. So, each one of them have a corresponding Model,

which represents the settable properties of these elements. The user, with the help of our

Graphical Editor (called the Archaware2 Editor) can change these properties.

A View is a figure that represents a Model. For instance, we can choose to represent a

Server with a Rectangle, an Ellipse or any other complex figure, made up with composition

of simpler figures. GEF differentiates between a Model and its associated view, and

strongly recommends that the Model should have no dependence on its View. In other

words, it should be possible to change the figure for a Model, without making any change

in the Model itself.

The Controller is the most complex part of the System. It acts like a listener to both

User Events as well as a change in some property of the Model. It’s the responsibility of

the Controller to make the presence of a View transparent to the Model. Generally, there

is a one-to-one relationship between the three constituents of the System.

15



3.3 The Draw2d Toolkit

Draw2d is a toolkit for drawing figures on an SWT Canvas[10]. All the figures are Java

Objects and hence, occupy no Operating System resources. Draw2d also captures most of

the SWT Events, like click or drag, which can then be caught and handled appropriately.

In the MVC architecture discussed above, the View is provided with the help of Draw2d

figures. A figure can be as simple as a Rectangle or as complex as a figure with Labels,

Lists, any other Draw2d Widget or even, other figures also. A Draw2d label is a subtype

of Draw2d figure, and hence can be seamlessly added to a figure like any other figure,

forming a Parent-Child relationship.

In Archaware2, every Component is represented by a specific colored rectangle or el-

lipse, with other properties such as its name, displayed with the help of Labels (Figure 3.2).

Some components, like a Relation (Data Element) or a Layered Module have other settable

properties too, which are represented by Complex figures. For instance, A relation can

have Attributes (Properties), which are represented by other figure objects. When the

User adds an attribute to a Relation, a Parent-Child relationship is created between the

Relation and Attribute figure.

The Connectors are designed in a similar fashion, by adding other figures to a base

Connection figure. The children of a Connection figure are generally known as Decorations.

For instance, in Figure 1.2, the “instance of ” Connector has a decoration in the middle

with a Label, and a hollow triangle arrow decoration at the target end of the Connector.

The Archaware2 Diagrams are actually Draw2d Free Form Layers, which can extend

in all directions, and can hold Draw2d Figures as its Children. This is the blank canvas

User sees when a New Hybrid Diagram is created (The other diagrams, by default come

with some sample figures pre-drawn).

3.4 SWT: The Standard Widget Toolkit

SWT is the toolkit, on top of which Draw2d works. Its a Widget Toolkit for Java[11], with

the help of which, widgets like Labels and Lists are created. Although the toolkit can be

used in a standalone way to build GUI based applications, it is also used quite frequently

along with GEF/Draw2d.

16



Figure 3.2: The Archaware2 Components

In Archaware2, we make use of the Widget kit mainly to design the Dialog Boxes which

appear for showing Messages, Errors and Architectural Advices to the User Figure 3.3.

We also use the facilities of SWT for designing the Wizards, and taking inputs in the form

of Popups.

Figure 3.3: Archaware2 Advice for a Layered Diagram

17



Chapter 4

Archaware2 Architecture

We now describe Archaware2 from an Architectural Perspective. We’ll first take a look at

the Major Design Decisions which affected Archaware2 architecture (Section 4.1). Next,

we will discuss the Major Components of Archaware2 (Section 4.2). Finally, in Section 4.3

we’ll discuss how these Components are implemented at the level of Java Packages.

4.1 Principle Design Decisions

When designing an Architecture, there are many factors which may affect the same. For

instance, the choice of one technology over the other, may affect the Architecture signifi-

cantly. Similarly, the concerns of a stakeholder is also be one of the major factors, which

affects the Architecture. We discuss a few Design Decisions that we took, along with some

reasoning behind the same.

4.1.1 Prefer Extension over Development

Archaware2 is an Eclipse Plug-in. In fact, its an Eclipse RCP (Rich Client Platform)

Application. An RCP application is very much like any other Window application, with

the difference that it is actually a stripped down (in most cases) version of the Eclipse

IDE. By stripped down we mean, that an RCP is just a subset of the Menus, Toolbars,

Views, Plug-ins etc. of a regular eclipse IDE.

We could’ve develop a Window application from the scratch, but it was better to

extend the flexible Eclipse platform. This is because the application can be further used,

or extended, by adding more functionalities, in the form of new Plug-ins (any valid eclipse

18



plug-in can be a part of Archaware2). Moreover Eclipse provides a basic framework of

Windowing, along with a number of built-in functionalities (like Toolbars and Menus),

which need not be recreated.

What more we got along by using Eclipse as our base for extension, is the facility to

use other existing plug-ins like GEF (Section 3.2) and Draw2d (Section 3.3), which greatly

reduced the amount of code required to build Archaware2.

4.1.2 Prefer Simplicity over Completeness

Archaware2 is built with the perspective of providing the user, a near Paint Brush type

experience for creating Architectural Documents. What we mean by this, is that the

User Interface of the tool should be easy to use, and the User should not be burdened by

prompts for the details.

For example, Archaware2 does not provide a “port-to-role” matching logic. Instead,

the checks for validness of a connection is put at the creation time, and the connection is

created only when the Source and Destination Elements are of allowable types. In other

words, ports and roles are implicit entities which are assumed, but never explicitly shown.

This may of course, reduce the completeness of Archaware2 as an Architectural Doc-

umentation Tool, but keeping our perspective in account, its a compromise, worth doing.

4.1.3 Use the MVC pattern

This design decision was almost a derivative of the fact that GEF (Section 3.2) supports

MVC based architecture. Although you can club the model, view and controller into one

or two classes, it is better to follow the convention that GEF advices. This ensures that

someone interested in extending Archaware2 and the future developers, find it easy to

understand the code base.

Though the pattern GEF advices does not completely fits into the MVC pattern, it can

be called a first level derivative of the same. We will discuss about this more in Section 4.2

4.1.4 Starting with the Shapes Example

There is a very nice example on learning GEF for beginners, called The Shape Editor

Example [12]. Not only does it give you a great overview of GEF/Draw2d, it also can be

used as an excellent starting point for building your own Graphical Editor. The example

19



shows, how to build an editor which can draw a rectangle and an ellipse in a Graphical

Editor. It also provides facility to connect any pair of them with either a solid, or a dashed

connection.

Since our basic functionality (of drawing shapes and connecting them) was imple-

mented at the basic level in the example, we took the decision to build our application

over the Shape Example, extending and tweaking it as and when required.

4.2 Archaware2 Component Description

Figure 4.1 shows a runtime snapshot of Archaware2, for an element, connection, note, or

style. As we can see, the architecture has a lot of resemblance to the MVC architecture,

with a slight change by inclusion of commands. We briefly describe these Components in

this section.

Figure 4.1: Archaware2 Component and Connector Diagram

4.2.1 Model Component

A Model is the actual representation of some real world entity. Models have properties,

some may be editable, others may not be. When a diagram is stored to a File, we only

save the model. So, in theory, we can develop different applications, which can depict

20



the same model in different figures, and the same stored data can be opened in different

editors.

For Archaware2, all element models are instances of Archaware2Element, which in

turn is an instance of Shape. A Shape has properties like width, height and location.

An Archaware2Element adds a “name” property to it. The elements then, can add their

own properties (like a Layer Number, or set of attributes). Similarly, all Relationships

are instances of Connection. A Connection has the property of its style, Solid, or Dashed.

The different Connections then add their own properties to it, like annotations, Source or

Target Cardinalities, etc. Styles are also represented by their models. If the Architectural

Advice, if any, is to be provided with a Style, then its made a part of the Model’s behaviour.

Notes are special instances of Archaware2Element, which can not have Connections.

4.2.2 Figure Component

Every Model is represented by a Figure. The Archaware2 Elements have a Rectangular or

Elliptical figure, depending on their type (Component or Module). The Figure is created

and managed by the model’s Editpart. The model itself is not aware about the figure at

all. Figures are direct mode of interactions with the user. They can be selected, moved,

resized or deleted by the User. Any such event leads to a change in the Model of that

figure, through execution of some command.

4.2.3 EditPart Component

The Editpart acts like a mediator between the Model and its Figure. The Editpart act like

a listener to both of them. A figure can be changed by the User. When the Editpart gets

a change request in this regard, it issues a command, to change the model accordingly.

This fires a property change event on the model, on which, the Editpart changes the figure

accordingly to match the change in the Model.

4.2.4 EditPart Factory Component

The Editpart factory creates editparts on the fly for any provided model. The model could

be a freshly created one, or one being loaded from a file. The Editpart factory keeps a

Model-to-Part map with it, which is referenced every time, such a request is made to it.

21



4.3 Archaware2 Module Description

We now take a look at some of the major java packages Archaware2 has, and the func-

tionalities they implement. Figure 4.2 provides a pictorial overview of what we will cover

in this section.

Figure 4.2: Archaware2 Module Diagram (Major Elements and Relationships)

4.3.1 The model package

This package contains all the implementations required for the Models that Archaware2

needs. This includes model implementations for the Elements, Connections as well as

the Styles. The Package has other packages included in it, which divide the Element

implementations, Connection implementations and Style implementations within them.

The model package also contains, the package which implements the commands. Although

commands can be kept in a different package altogether, but since the only usage of

a Command is to change some Model, it can be considered a submodule of the model

module in some sense.

22



4.3.2 The parts package

This package contains the implementations for the Controller Components in the MVC

pattern. In GEF terminology, a controller is called an Editpart. Generally, a one-to-one

mapping between a model and its editpart exists. In Archaware2, we use a same Editpart

implementation for all the elements, except the Archaware2 Note, Layered Module, Data

Element and Attribute. This is because these elements are slightly different from the

other elements (we will discuss the same in Chapter 6). Similarly, we use the same Edit-

part implementation for all Connections, except Aggregation, m-n, and the two Generic

Connections, because of similar reasons.

4.3.3 The figures package

This package is responsible for drawing the figures for our models. This includes figures

for the elements, as well as the connections. The figures are drawn with the help of a

Draw2d class called Figure. The Runtime elements, are shown with the help of ellipses.

Static elements are shown in rectangles. The Generic Element is shown with the help of a

Rounded Rectangle (a generic element can imitate a Module or a Component). Connection

figures have decorations attached to them. Decorations are attached to Source, Target and

Mid-point locations, depending on the type of connection it is. Connections of different

types have different widths and styles (Solid or Dashed).

All elements and connections are assigned unique colors to distinguish them from each

other in the Diagram.

4.3.4 The wizards and menuandcommands packages

The wizards package implements the wizards that are shown to the user for creating a new

Archaware2 Diagram. The menuandcommands package is responsible for the working of

the Menu items in the Archaware2 Menu, as well as the icons on the Archaware2 Toolbar.

These are actually command handlers, which work at the level of Styles, unlike the other

commands, which work at the level of elements and connections.

23



Chapter 5

Archaware2 Styles

In this chapter we take a detailed look at the Styles Archaware2 offers. We start the chap-

ter by introduction to Architectural Styles (Section 5.1). We’ll then discuss the two broad

category of styles, provided in Archaware2, in Section 5.2 and Section 5.3. Section 5.4

discusses the Hybrid Diagrams, which can be drawn in Archaware2, and Section 5.5 de-

scribes the Custom Styles feature. We conclude by discussing the built-in Architectural

Advices and Constraints in Section 5.6.

5.1 Introduction to Styles

An Architectural Style1 prescribes a set of Components and Connectors, along with some

restrictions on how Connections can be made between them. Styles are generic in nature, in

sense; they do not prescribe the applicability of the style to any specific problem (although

the Style Templates may give informal advices on its application, without getting too

specific to a single case).

Styles can be divided into three Major categories: Module Styles, Component Styles

and Allocation Styles[13].

Module Styles define the relationships between Modules. A Module is a unit of implemen-

tation. A Class that provides a specific functionality may be considered an example of a

Module.

Component Styles describe relationship between a set of Components. Unlike a Module,

a Component is a runtime entity like a Process or a Thread. The Component Styles show

the running behavior of a System.

1 From here on, we use the word Style to refer to an Architectural Style

24



Allocation Styles describe how the Software elements (Modules or Components) are mapped

to the overall physical system. In other words, how the Software entities interact with

non-software entities like Processors, Communication links, Memory devices etc.

As of now, we have chosen 3 Module Styles and 3 Component Styles to start with in

Archaware 2. The Archaware2 architecture is flexible enough to introduce new styles at

a later stage, without any significant modification to the current system. The user can

start with a sample Style Template and add or remove more elements to it to design the

required Architecture.

Archaware2 also provides a Hybrid Diagram (Section 5.4) for those users, whose re-

quirements do not map exactly to one of the given styles. The feature of creation and

loading of user-defined styles is also provided for users who find a certain style being

frequently in their Architecture diagrams.

5.2 Archaware2 Module Styles

As discussed earlier, the major elements of a Module Style are Modules. A Module can be

defined as a unit of implementation, which is responsible for providing a set of functionali-

ties. A Module can be anything ranging from a Class or a Structure, to Layers and Tables.

A Module Style describes the Static behaviour of a System at Compile time. There are a

number of Module Styles known today. Archaware2 currently supports three of them.

5.2.1 The Uses Style

The Uses Style is probably the simplest of all styles. The elements of this style are Modules,

wheres the only Relationship that is used between them is the Uses relationship, which

shows the dependency of a Module on some other Module. This style is suitable for

documenting architectures of Systems being developed in increments. It is also helpful for

the Debugging and Testing Phases of the Product Development [13].

An example usage of the style is depicted in Figure 5.1, which describes how a feature

of converting text to Lower or Upper Case in a text editor may be implemented.

25



Figure 5.1: An Example of the Uses Style

5.2.2 The Layered Style

The Layered Style conceptually divides the system in a set of Layers. A Layer can be

seen as a group of Modules, working together, to provide a coherent set of Services. Every

Layer Services the Layers above it, while taking Services from the Layers below. The types

of Relationships in a Layered Style Diagram are; Services Relationship, which is always

“from a lower Layer to a Higher one”, and Uses Relationship (same as in Uses Style),

between “modules at the Same Layer”.

The example of a Layered Style Diagram shown in Figure 5.2, shows a plausible way

of architecting a system for Speed Display and Control on an Automobile.

5.2.3 The Data Model Style

The purpose of Data Model Style is to model the data that the system will act upon. The

basic element of a Data Model Style Diagram is a Data Entity [13]. In Archaware2, we

call them Relations, because they are very similar to the Tables encountered in Databases.

The relations have Attributes, which describe their behaviour. The Relationships involved

could be Specialization, when a Relation is a “Specialization” of other(s); Aggregation,

when a Relation is a “part of” other relation(s); 1-1 or m-n relationships, showing the

“cardinality” of the association between two relations; or a References relationship between

compatible attributes of two relations (similar to a Foreign Key in Databases).

26



Figure 5.2: An Example of the Layered Style

A simple example from the Banking domain, which can be documented using the Data

Model Style, is shown in Figure 5.3.

5.3 Archaware2 Component-and-Connector Styles

The Module Styles depict a system in a static fashion. The Component-and-Connector

Styles (also called C&C Styles in short) are meant for capturing the Runtime behaviour

of a system. The basic element of a C&C Style is a Component. A Component can be any

runtime entity like a Process, thread, data store etc.[13] Archaware2 provides support for

three C&C Styles currently. We now take a look at the styles currently available in some

detail.

5.3.1 The Client/Server Style

The Client/Server Style can document scenarios, in which the elements of the system

can be divided into sets, i.e. Clients and Servers. A Client Component is a Component

27



Figure 5.3: An Example of the Data Model Style

which sends Requests to a Server for a Service. A Server Component take Requests

from Clients, and send back a reply. Their is only one kind of Relationship defined in a

Client Server Style, which is a Request/Reply relationship, which connects a Client to a

Server. Variations may exist where a Server may act as a Client for some other Server,

but Archaware2 doesn’t allow the the same (however in the Hybrid Style, the same can

be implemented using Generic Elements and Connections).

A simple example of a Multi-threaded Web Server is shown in Figure 5.4.

5.3.2 The Pipe-and-Filter Style

The Pipe-and-Filter Style, as the name suggests, is composed of Pipes and Filters. A

Filter is a Component which performs some processing on data, forwarded to it by some

other Filter, and passes the processed data to some other Filter. The passing of data

between the Filters is done by Pipes. A Pipe is a unidirectional connection between two

filters, which provides Data Write facility at one end, and Data Read at the other.

28



Figure 5.4: An Example of the Client/Server Style

The example shown in Figure 5.5 shows how a set of Pipes and Filters can be deployed

to perform updates to a Database.

Figure 5.5: An Example of the Pipe-and-Filter Style

29



5.3.3 The Publish/Subscribe Style

The Publish/Subscribe Style is helpful to document the architecture of systems where a set

of Publishers, publish some data, which is asynchronously accessed by a set of Subscribers.

A common Platform (In Archaware2 we call it the Publish/Subscribe Platform) acts as a

mediator between the two types of components. The Relationships involved are a Publish

relationship, which connects a publisher to the platform; and a Subscribe relationship,

which connects a subscriber to the platform.

The example of an e-Learning System is shown in Figure 5.6 to give an idea of the

Publish/Subscribe Style.

Figure 5.6: An Example of the Publish/Subscribe Style

5.4 Archaware2 Hybrid Diagrams

Although there are a number of Architectural Styles available, it seldom happens that the

whole architecture of a System correspond to a single style in its entirety. What may be

more natural to think is that the overall architecture may have “instances” of these styles,

cooperating with each other to build the overall system. In such cases, any specific style,

is not much useful, but a method to combine their instances into a single diagram would

rather be more helpful.

30



The Hybrid Diagrams in Archaware2, are probably the kind of diagrams which may

suit the user in such situations. A Hybrid diagram can have instances of all the Elements

and Connections Archaware2 provides (plus a few more, discussed in a short while). So, a

user, for example can have a Client, as well as a Filter in the same diagram. Similarly, A

Layered Module and a Publish/Subscribe Platform can also be drawn in the same diagram

(though its highly discouraged, as the two depict system behaviour in different ways).

There is however a catch. The Connections can still only be made, in a “valid” fashion,

i.e. if you try connecting a Pipe with a Module, it won’t. In other words, a Connection can

still not be abused. But this restriction can leave us with disjoint sets of style instances,

which can never be interconnected, as most of the existing connections can not connect

elements from different styles.

To solve this problem, we come up with the idea of a Generic Element and Generic

Connectors. A Generic Element can be used to imitate any Architectural Element (it

is advised that a stereotype, similar to UML, is added in the caption of the element

to show its type). Two additional connectors, other than those available in all styles,

called Unidirectional Generic Connection and Bidirectional Generic Connection are also

provided in the Hybrid Diagram. Just like a Generic Element can imitate any Element,

a Generic Connection can imitate any connection. The User can use any one of the two

Connections to connect any two Archaware2 Elements, and give suitable caption(s) to

the Connection to express the Connection type. However, the responsibility of using the

Generic Elements and Connections and whether they make sense or not, lies totally with

the user. In other words, if the user is using the Hybrid diagram, we expect that the user

is good enough to understand basics of Software Architecture.

We will look at some examples in Archaware2 Examples (Chapter 7) about using

a Hybrid Diagram to solve a similar problem.

5.5 Archaware2 Custom Styles

As we discussed in the previous section, it may often be the case that a single style is

not good enough for a User. Moreover, a user may be tempted to document a “recurring

pattern”2 within his diagrams, and may wish to have it stored at some place, from where,

it can be fetched as many times as needed. The Archaware2 Custom Styles are just

2Not to be confused with Architectural Patterns.

31



meant for this. Archaware2 Custom Styles can be used to save any arbitrary elements and

connections to a file, which can be loaded in a Hybrid Diagram later3. This essentially

means, a User can create an arbitrary style on his own, and use it subsequently in his

diagrams.

We will look at some examples of how Custom Styles can be used to document some

other popular styles in Archaware2 Examples (Chapter 7).

5.6 Archaware2 Advices and Constraints

As mentioned before, every Style has a set of Constraints and Cautions associated with it.

Archaware2 implements them at 2 levels. The Constraints are implemented in the form

of prohibited connections between a pair of Elements. For example, its not possible to

connect an module to another module at a lower or same layer with a Services connection,

in the Layered Style (Sub-Section 5.2.2). Similarly in the Publish/Subscribe Style (Sub-

Section 5.3.3), a subscriber can not make a Subscribe connection to a publisher, it can

only do so with a publish/subscribe platform.

Architectural Advices are hints to a user, that something in the drawn diagram may

not be a good idea. For example, if there is an instance of Multiple Inheritance in the Data

Model Style (Sub-Section 5.2.3), the User will be warned of the same (Multiple Inheritance

is not considered a Good Practice, as it generally reduces Maintainability of the System).

Similarly, if the pipes and filters in a Pipe-and-Filter Style (Sub-Section 5.3.2) has a loop,

the user is informed about the same, as such a system may never exist practically.

The difference between a constraint and an advice is, a Constraint is always maintained,

whereas acting on an advice is optional for the User. The advices are presented to the

User at the time of Saving the file. The user can cancel the Save and restructure diagram,

or can continue saving it without any restructuring. However, there are no advices in a

Hybrid Diagram (Section 5.4), since the User is free to draw anything, which may not be

close to any of the Styles we mentioned.

3Since Custom Styles may have any elements and connections, they can only be imported to Hybrid
Diagrams

32



Chapter 6

Archaware2 Elements and

Connectors

Archaware2 provides the user a Palette of Elements and Connections, which can be clicked,

an drawn on the diagram canvas. Only those elements and connections, which are appli-

cable to a Style, are shown in the Palette, while rest are hidden. In this chapter, we will

discuss all the Archaware2 Elements and Connections in brief. Section 6.1 will discuss the

Elements, while Section 6.2 will discuss the Connections in Archaware2.

6.1 Archaware2 Elements

All Archaware2 Elements inherit Size and Location properties (Sub-Section 4.2.1). Some

Elements have other properties too. We’ll discuss them in this section.

6.1.1 Component

A Component is the basic element of C&C Styles. Refer to Figure 6.1, the Ellipses in the

diagram are instances of a Component. Table 6.1 summarizes the Component element.

Behaviour Runtime entity

Properties Name

Figure Ellipse

Figure Background Light Blue

Figure Foreground Black

Table 6.1: The Component Element

33



Figure 6.1: Example showing: Components, Pub/Sub Platform, Publish and Subscribe
Connections

6.1.2 Publish/Subscribe Platform

A Publish/Subscribe Platform (or Pub/Sub Platform in short) is the platform which en-

ables the Publishing and Subscribing Actions. It may be a network, mailbox, or even a

Shared Memory Space. Refer to Figure 6.1, the rectangle in the diagram is an instance of

a Pub/Sub Platform. Table 6.2 summarizes the Pub/Sub Platform element.

Behaviour Storage and/or Communication entity

Properties Name

Figure Rectangle

Figure Background Dark Pink

Figure Foreground White

Table 6.2: The Pub/Sub Platform Element

6.1.3 Client Component

A Client is a special type of Component, used in a Client Server Style. It sends “Requests”

to a Server Component (Sub-Section 6.1.4), and gets a “Reply” back. Refer to Figure 6.2,

the Reddish Brown ellipse in the diagram is an instance of a Client Component. Table 6.3

summarizes the Client element.

Behaviour Runtime entity

Properties Name

Figure Ellipse

Figure Background Reddish Brown

Figure Foreground White

Table 6.3: The Client Element

34



Figure 6.2: Example showing: Client, Server and Request/Reply Connection

6.1.4 Server Component

A Server is a special type of Component, used in a Client Server Style. It receives “Re-

quests” from a Client Component (Sub-Section 6.1.3), and sends a “Reply” back. Refer

to Figure 6.2, the Greenish ellipse in the diagram is an instance of a Server Component.

Table 6.4 summarizes the Server element.

Behaviour Runtime entity

Properties Name

Figure Ellipse

Figure Background Olive Drab (Shade of Green)

Figure Foreground White

Table 6.4: The Server Element

6.1.5 Filter Component

A Filter is a special type of Component, used in a Pipe-and-Filter Style. It receives data

from other Filters with the help of Pipes, do some processing on it, and then pass it on

to the next Filter, via another Pipe. Refer to Figure 6.3, the ellipse in the diagram is an

instance of a Filter Component. Table 6.5 summarizes the Filter element.

Behaviour Runtime entity

Properties Name

Figure Ellipse

Figure Background Light Pink

Figure Foreground Black

Table 6.5: The Filter Element

35



Figure 6.3: Example showing: Filters and Pipe Connection

6.1.6 Module

A Module is the basic element of the Module Styles. It could be a Class, a Package, a C

file or any other Implementation unit. Refer to Figure 6.4, the rectangle in the diagram

is an instance of a Module. Table 6.5 summarizes the Module element.

Behaviour Implementation unit

Properties Name

Figure Rectangle

Figure Background Dark Blue

Figure Foreground White

Table 6.6: The Module Element

Figure 6.4: Example showing: Modules and Uses Connection

Figure 6.5: Example showing: Layered Modules, Services and Uses Connections

36



6.1.7 Layered Module

A Layered Module is a special type of Module, used in a Layered Style. Every Layered

Module, belongs to a logical layer. Refer to Figure 6.5, the rectangle in the diagram is an

instance of a Layered Module. Table 6.7 summarizes the Layered Module element.

Behaviour Implementation unit

Properties Name, Layer Number

Figure Rectangle

Figure Background Light Orange, Dark Blue for Layer

Figure Foreground Black, White for Layer

Table 6.7: The Layered Module Element

Figure 6.6: Example showing: Relations, Attributes; Specialization, Aggregation, 1-1, m-n
and References Connections

6.1.8 Relation

A Relation or Data Element is a special type of Module, used in a Data Model Style. It

represents a Data Entity, with Attributes (Sub-Section 6.1.9). It can be specialization or

child of other Relations too. Refer to Figure 6.6, the bigger rectangles in the diagram are

instances of Relation. Table 6.8 summarizes the Relation element.

37



Behaviour Data Modelling

Properties Name, Attributes

Figure Rectangle

Figure Background Light Yellow

Figure Foreground Green

Table 6.8: The Relation Element

6.1.9 Attribute

An attribute is a child entity of a Relation (Sub-Section 6.1.8), used in a Data Model

Style. It represents some property of the Relation. Attribute has a propert called Data

Type, which can be one of the three values, “NUMBER”, “VARCHAR” or “DATE”. Re-

fer to Figure 6.6, the smaller rectangles within the relations are instances of Attributes.

Table 6.9 summarizes the Attribute element.

Behaviour A Property of Relations

Properties Name, Data Type

Figure Rectangle

Figure Background Light Yellow

Figure Foreground Blue, Dark Orange for Data Type

Table 6.9: The Attribute Element

6.1.10 Database

A Database is a Data Storage Entity. Its available currently in only Hybrid Diagrams.

Refer to Figure 6.7, the figure of a Cylinder is an instance of Database.

Table 6.10 summarizes the Database element.

Behaviour Storage Element

Properties Name

Figure Cylinder

Figure Background White, Gray Tops

Figure Foreground Blue

Table 6.10: The Database Element

38



Figure 6.7: Example showing: Database, Generic Component; Generic Connections

6.1.11 Generic Element

A Generic Element is an element which can be molded into anything. The User is free to

use it as any element he wants. It is useful in cases when none of the elements suit the

User’s requirements. They are only available in the Hybrid Diagrams.

Refer to Figure 6.7, the figures of Rounded Rectangles are instances of Generic Elements.

Table 6.11 summarizes the Generic Element.

Behaviour Anything as per requirements

Properties Name

Figure Rounded Rectangle

Figure Background Dark Orange

Figure Foreground Black

Table 6.11: The Generic Element

Archaware2 Note

Although Archaware2 Note is not really an element, its properties are very similar to

that of an Archaware2 Element. The only difference is, it is used to write descriptions,

and hence, no connections can be made to it. Table 6.12 summarizes the Archaware2 Note.

Behaviour User Description Tool

Properties Name

Figure Rectangle

Figure Background White, with gray border

Figure Foreground Blue

Table 6.12: The Archaware2 Note

39



6.2 Archaware2 Connections

All Archaware2 Connections have Source and Target Properties (Sub-Section 4.2.1). There

are other properties that they have too. In this section, we’ll discuss them

6.2.1 Publish Connection

The Publish Connection is used by a Publishing Component to publish its data on to a

Pub/Sub Platform in the Publish/Subscribe Style. It is shown in Figure 6.1. Table 6.13

summarizes the Publish Connection.

Style Solid

Source Annotation None

Target Annotation None

Mid-Point Annotation Publish

Figure Color Dark Slate Gray

Annotation Foreground Dark Blue

Table 6.13: The Publish Connection

6.2.2 Subscribe Connection

The Subscribe Connection is used by a Subscribing Component to fetch data from a

Pub/Sub Platform in the Publish/Subscribe Style. It is shown in Figure 6.1. Table 6.14

summarizes the Subscribe Connection.

Style Dashed

Source Annotation None

Target Annotation None

Mid-Point Annotation Subscribe

Figure Color Dark Slate Gray

Annotation Foreground Dark Blue

Table 6.14: The Subscribe Connection

40



6.2.3 Request/Reply Connection

The Request Reply Connection is used by a Client to send request and receive response

from the Server in the Client/Server Style. It is shown in Figure 6.2. Table 6.15 summa-

rizes the Subscribe Connection.

Style Solid

Source Annotation None

Target Annotation None

Mid-Point Annotation Subscribe

Figure Color Dark Gray

Annotation Foreground Dark Blue

Table 6.15: The Request/Reply Connection

6.2.4 Pipe Connection

The Pipe Connection is used by a Filters to send and receive data in the Pipe-and-Filter

Style. It is shown in Figure 6.3. Table 6.16 summarizes the Pipe Connection.

Style Solid

Source Annotation None

Target Annotation None

Mid-Point Annotation Pipe

Figure Color Medium Aquamarine (A Shade of Pink)

Annotation Foreground Dark Blue

Table 6.16: The Pipe Connection

6.2.5 Uses Connection

The Uses Connection is used by Modules to depict their usage of other modules in the Uses

and Layered Styles. It is shown in Figure 6.4. Table 6.17 summarizes the Uses Connection.

Style Dashed

Source Annotation None

Target Annotation None

Mid-Point Annotation Uses

Figure Color Black

Annotation Foreground Dark Blue

Table 6.17: The Uses Connection

41



6.2.6 Services Connection

The Services Connection is used by Layered Modules to depict their usage by Layered

Modules at higher Layers in the Layered Style. It is shown in Figure 6.5. Table 6.17

summarizes the Services Connection.

Style Solid

Source Annotation None

Target Annotation None

Mid-Point Annotation Services

Figure Color Black

Annotation Foreground Dark Blue

Table 6.18: The Services Connection

6.2.7 Aggregation Connection

The Aggregation Connection is used by Relations to show that another relation is a part

of this relation in the Data Model Style. It is shown in Figure 6.6. Table 6.19 summarizes

the Aggregation Connection.

Style Solid

Source Annotation <Source Cardinality>

Target Annotation <Target Cardinality>

Mid-Point Annotation Child of

Figure Color Black

Annotation Foreground Dark Blue

Table 6.19: The Aggregation Connection

6.2.8 Specialization Connection

The Specialization Connection is used by Relations to show that another relation is a the

parent of this relation in the Data Model Style. It is shown in Figure 6.6. Table 6.20

summarizes the Specialization Connection.

42



Style Solid

Source Annotation None

Target Annotation None

Mid-Point Annotation Instance of

Figure Color Black

Annotation Foreground Dark Blue

Table 6.20: The Specialization Connection

6.2.9 References Connection

The References Connection is used by Attributes to show that another attribute defines

the set of valid values for it in the Data Model Style. It is shown in Figure 6.6. Table 6.21

summarizes the References Connection.

Style Dashed

Source Annotation None

Target Annotation None

Mid-Point Annotation References

Figure Color Black

Annotation Foreground Dark Blue

Table 6.21: The References Connection

6.2.10 1-1 Connection

The 1-1 Connection is used by Relations to show that another relation has a connection

cardinality of one-one in the Data Model Style. It is shown in Figure 6.6. Table 6.22

summarizes the 1-1 Connection.

Style Solid

Source Annotation 1

Target Annotation 1

Mid-Point Annotation None

Figure Color Black

Annotation Foreground Black

Table 6.22: The 1-1 Connection

43



6.2.11 m-n Connection

The m-n Connection is used by Relations to show that another relation has a connection

cardinality of many-many in the Data Model Style. It is shown in Figure 6.6. Table 6.23

summarizes the m-n Connection.

Style Solid

Source Annotation <Source Cardinality>

Target Annotation <Target Cardinality>

Mid-Point Annotation None

Figure Color Blue

Annotation Foreground Blue

Table 6.23: The m-n Connection

6.2.12 Generic Connections

The Generic Connections are meant to take place of any connection. It is useful if the

Connection required by the User is not available in the palette, or the User wants to join

elements present in two different styles. There are two Generic Connections, one Unidirec-

tional, the other one, Bidirectional. They are available only in the Hybrid Diagrams. They

are shown in Figure 6.7. Table 6.24 and Table 6.25 summarize the Generic Connections.

Style Solid

Source Annotation None

Target Annotation None

Mid-Point Annotation <User Defined>

Figure Color Green

Annotation Foreground Green

Table 6.24: The Generic Unidirectional Connection

Style Solid

Source Annotation <User Defined>

Target Annotation <User Defined>

Mid-Point Annotation None

Figure Color Dark Green

Annotation Foreground Dark Green

Table 6.25: The Generic Bidirectional Connection

44



Chapter 7

Archaware2 Examples

We have already seen examples of the Archaware2 Styles. In this Chapter, we see an

example of the Archaware2 Hybrid Diagram (Section 7.1). Then, we take a look at some

other styles, which are defined with the help of Hybrid Diagrams, and then converted to

Archaware2 Custom Styles (Section 7.2). These Style Diagrams, along with the Example

Diagrams we saw in Chapter 5, are built-in examples under Archaware2. The user can

import them in his workspace, and can modify them or use them as they are.

7.1 A Hybrid Diagram Example

A Multi-Tier Client Server System is one, in which every Component is assigned a Tier.

A Tier is similar to a Layer, but the difference is, it groups Runtime entities and not

implementation units. Here the Client is in first Tier. The Web Server is in the Second

Tier, and the Database is in the Third Tier. It is clear that none of the existing Styles can

be used to depict this type of Architecture. However, we can use the Hybrid Diagram, to

document such architectures. shows precisely, how we can do that. We can import two

instances of Client/Server Style, and use Generic Component and Generic Connections to

do the same.

7.2 Example Custom Styles

We now present some more example of usage of Hybrid Diagrams, this time specifically to

produce new Custom Styles. As we have already mentioned, there are a number of Styles

known today, both C&C, as well as Module Styles.

45



Figure 7.1: An Example showing implementation of Multi-Tier Client Server System using
Hybrid Diagrams

Archaware2 currently supports only 6 of them. Some more Styles, which are not a part of

Archaware2, are documented using the Hybrid Diagram, and then exported, as a Custom

Style. This section browse through these styles. Figure 7.2 to Figure 7.6 show these

Custom Styles.

Figure 7.2: An Example of Custom Styles: The Aspects Style

46



Figure 7.3: An Example of Custom Styles: The Generalization Style

Figure 7.4: An Example of Custom Styles: The Decomposition Style

47



Figure 7.5: An Example of Custom Styles: The Peer-To-Peer Style

Figure 7.6: An Example of Custom Styles: The Shared Data Style

48



Chapter 8

Conclusion and Future Work

As a Conclusion, we can say, Archaware2 is a Software Architecture Documentation Tool,

with a perception of ease to use. The tool provides click-and-draw interface for drawing

Architecture Diagrams, without bugging the user for intricate details of the same. The

User can import and extend, any of the supported styles, or may chose to craft a style on

his own, and use it later. The tool’s architecture is strongly in line with the Architecture

of the Graphical Editing Framework, making it easy to extend by future developers.

There can be a number of Future Enhancements that can be incorporated in Ar-

chaware2. We list a few of them here:

1. New Styles can be added other than the 6 styles already supported.

2. The User can be given Preferences on choosing Background and Foreground Colors

for the Elements and Connections.

3. More Elements and Connections (which may have cross style application) can be

added in the Hybrid View.

4. The Diagrams can be exported in an XML based format, which can be read and

modified using any XML editor.

49



Bibliography

[1] Software Engineering Institute. Software architecture defenitions. http://www.sei.

cmu.edu/architecture/start/community.cfm.

[2] Dewayne E. Perry and Alexander L. Wolf. Foundations for the study of software

architecture. SIGSOFT Softw. Eng. Notes, 17:40–52, October 1992.

[3] Philippe Kruchten. The 4+1 view model of architecture. IEEE Softw., 12:42–50,

November 1995.

[4] Philippe Kruchten, Mary Shaw, Grady Booch, Rich Reitman, and Kurt

Bittner. http://217.126.172.252/WebTecnica/Programacion/Objetos/02UML/

Referencias/02Presentaciones/arch.pdf.

[5] University of California. Archstudio 4 website. http://www.isr.uci.edu/projects/

archstudio/.

[6] IBM Corporation. Rational rose website. http://www-01.ibm.com/software/

awdtools/developer/rose.

[7] Carnegie Mellon University. Acme studio overview. http://www.cs.cmu.edu/~acme/

docs/language_overview.html.

[8] Eclipse Foundation. Eclipse website. http://www.eclipse.org/org.

[9] Gef developer’s guide. http://help.eclipse.org/help33/index.jsp?topic=

/org.eclipse.gef.doc.isv/guide/guide.html.

[10] Draw2d developer’s guide. http://help.eclipse.org/helios/index.jsp?topic=

/org.eclipse.draw2d.doc.isv/guide/guide.html.

[11] Swt website. http://www.eclipse.org/swt/.

50

http://www.sei.cmu.edu/architecture/start/community.cfm
http://www.sei.cmu.edu/architecture/start/community.cfm
http://217.126.172.252/WebTecnica/Programacion/Objetos/02UML/Referencias/02Presentaciones/arch.pdf
http://217.126.172.252/WebTecnica/Programacion/Objetos/02UML/Referencias/02Presentaciones/arch.pdf
http://www.isr.uci.edu/projects/archstudio/
http://www.isr.uci.edu/projects/archstudio/
http://www-01.ibm.com/software/awdtools/developer/rose
http://www-01.ibm.com/software/awdtools/developer/rose
http://www.cs.cmu.edu/~acme/docs/language_overview.html
http://www.cs.cmu.edu/~acme/docs/language_overview.html
http://www.eclipse.org/org
http://help.eclipse.org/help33/index.jsp?topic=/org.eclipse.gef.doc.isv/guide/guide.html
http://help.eclipse.org/help33/index.jsp?topic=/org.eclipse.gef.doc.isv/guide/guide.html
http://help.eclipse.org/helios/index.jsp?topic=/org.eclipse.draw2d.doc.isv/guide/guide.html
http://help.eclipse.org/helios/index.jsp?topic=/org.eclipse.draw2d.doc.isv/guide/guide.html
http://www.eclipse.org/swt/


[12] Eclipse corner article: A shape diagram editor. http://www.eclipse.org/

articles/Article-GEF-diagram-editor/shape.html.

[13] Paul Clements, Felix Bachmann, Len Bass, David Garlan, James Ivers, Reed Little,

Paulo Merson, Robert Nord, and Judith Stafford. Documenting Software Architec-

tures: Views and Beyond (2nd Edition). Addison-Wesley Professional, 2010.

51

http://www.eclipse.org/articles/Article-GEF-diagram-editor/shape.html
http://www.eclipse.org/articles/Article-GEF-diagram-editor/shape.html

	Abstract
	1 Documenting Software Architecture
	1.1 Introduction to Software Architecture
	1.2 Documenting the Architectures
	1.3 Architecture Documentation Tools
	1.4 About Archaware2
	1.5 Thesis Outline

	2 Documenting Architectures with Archaware2
	2.1 Archaware2 Features
	2.1.1 Creating a Module Diagram
	2.1.2 Creating a Component Diagram
	2.1.3 Creating a Hybrid Diagram
	2.1.4 Drawing Elements and Connections
	2.1.5 Creating Custom Styles
	2.1.6 Exporting Diagrams to Images
	2.1.7 Interpreting Architectural Advices

	2.2 Archaware2 Scope
	2.2.1 Archaware2 Capabilities and Limitations
	2.2.2 Usefulness of Archaware2


	3 The Infrastructure
	3.1 The Eclipse Platform
	3.2 The Graphical Editing Framework
	3.3 The Draw2d Toolkit
	3.4 SWT: The Standard Widget Toolkit

	4 Archaware2 Architecture
	4.1 Principle Design Decisions
	4.1.1 Prefer Extension over Development
	4.1.2 Prefer Simplicity over Completeness
	4.1.3 Use the MVC pattern
	4.1.4 Starting with the Shapes Example

	4.2 Archaware2 Component Description
	4.2.1 Model Component
	4.2.2 Figure Component
	4.2.3 EditPart Component
	4.2.4 EditPart Factory Component

	4.3 Archaware2 Module Description
	4.3.1 The model package
	4.3.2 The parts package
	4.3.3 The figures package
	4.3.4 The wizards and menuandcommands packages


	5 Archaware2 Styles
	5.1 Introduction to Styles
	5.2 Archaware2 Module Styles
	5.2.1 The Uses Style
	5.2.2 The Layered Style
	5.2.3 The Data Model Style

	5.3 Archaware2 Component-and-Connector Styles
	5.3.1 The Client/Server Style
	5.3.2 The Pipe-and-Filter Style
	5.3.3 The Publish/Subscribe Style

	5.4 Archaware2 Hybrid Diagrams
	5.5 Archaware2 Custom Styles
	5.6 Archaware2 Advices and Constraints

	6 Archaware2 Elements and Connectors
	6.1 Archaware2 Elements
	6.1.1 Component
	6.1.2 Publish/Subscribe Platform
	6.1.3 Client Component
	6.1.4 Server Component
	6.1.5 Filter Component
	6.1.6 Module
	6.1.7 Layered Module
	6.1.8 Relation
	6.1.9 Attribute
	6.1.10 Database
	6.1.11 Generic Element

	6.2 Archaware2 Connections
	6.2.1 Publish Connection
	6.2.2 Subscribe Connection
	6.2.3 Request/Reply Connection
	6.2.4 Pipe Connection
	6.2.5 Uses Connection
	6.2.6 Services Connection
	6.2.7 Aggregation Connection
	6.2.8 Specialization Connection
	6.2.9 References Connection
	6.2.10 1-1 Connection
	6.2.11 m-n Connection
	6.2.12 Generic Connections


	7 Archaware2 Examples
	7.1 A Hybrid Diagram Example
	7.2 Example Custom Styles

	8 Conclusion and Future Work

