
Architectural Issues with Chatbots

A Thesis Submitted

in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

by

Saurabh Srivastava

to the

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY KANPUR, INDIA

October, 2020

mailto:ssri@cse.iitk.ac.in
http://www.cse.iitk.ac.in
http://www.cse.iitk.ac.in
http://www.iitk.ac.in




ii





iii





iv

Synopsis

Name of the Student : Saurabh Srivastava

Roll Number : 13111164

Degree : PhD

Department : Computer Science and Engineering

Thesis Title : Architectural Issues with Chatbots

Thesis Supervisor : Dr T.V. Prabhakar

Thesis Co-supervisor : Dr Vinay P. Namboodiri

Month & Year of Submission : October, 2020

Conversational interfaces for service portals have become reasonably common.

The colloquial term for the software component that provides this interface is chat-

bot. Chatbots can either be built from scratch or, developed using one of many

platforms available today. In either case, a chatbot usually functions as a part

of a larger, Containing system, involving other software components such as Web

Servers, Application Servers and Databases. Similar to any other software-intensive

system, these systems also have architectural issues. This thesis studies the process

of building a chatbot from an architectural perspective, highlighting the various

design decisions associated with the process.

The first decision in the design process is to choose a development model. It

includes decisions such as picking a development methodology (such as Agile Devel-

opment) and deciding upon the building tools to use. The chatbot could either be

mailto:ssri@cse.iitk.ac.in


v

Natural Language
Processing

Intent Classification and
Parameter Extraction

Conversational Flow
Management

User Interface Elements

Development
from scratch

Natural Language
Processing

Intent Classification and
Parameter Extraction

Conversational Flow
Management

User Interface Elements

NLP-as-a-Service

Natural Language
Processing

Intent Classification and
Parameter Extraction

Conversational Flow
Management

User Interface Elements

Natural Language
Processing

Intent Classification and
Parameter Extraction

Conversational Flow
Management

User Interface Elements

Conversation-as-
a-Service

ChatWidget-
as-a-Service

Managed by
Developer

Managed by
Platform

Figure 1: Solution stacks offered by different Chatbot-building Platforms

built in-house from scratch or; existing platforms can be used to aid the develop-

ment. Figure 1 provides an overview of the available solutions. There are platforms

which offer basic NLP services (termed as NLP-as-a-Service offering), that can be

used to compose chatbot-specific functions. There are also specialised platforms that

providing basic building blocks for creating a chatbot (grouped as Conversation-as-

a-Service solutions). Some platforms also offer ready-to-deploy chat widgets for spe-

cific mediums (titled ChatWidget-as-a-Service platforms). Any of these platforms

may be chosen to aid the chatbot-building process.

This decision, in turn, requires the understanding of the core elements of a typical

chatbot and its Containing system. This thesis is focused mainly on platform-

aided development. The chatbot-building platforms usually provide higher-level

design abstractions to define the use cases for the chatbot, freeing up the developers’

minds from managing complex Natural Language Processing (NLP) tasks. These

abstractions also help in building the chatbot in multiple, short iterations, as is the

requirement with several IT solutions today. There are, however, some new design

decisions which become a part of the development process, solely because of the use



vi

of these platforms. One such decision involves designing a definition template for

defining the chatbot over a platform. These templates can significantly affect the

behaviour of the built chatbot. Three popular platforms were used for performing

the case studies and experiments presented in this thesis - Google Dialogflow, IBM

Watson Assistant and Amazon Lex. The relevant Research Questions, along with

our contributions towards their solutions, are as follows:

1. What is the architecture of a typical chatbot? What relationship does

it share with its Containing system?

We begin by providing a dissected view of a chatbot to show its major elements.

We present five different elements of a chatbot which are part of a typical chatbot.

The Intent Classifier classifies any query that the chatbot receives in a class. These

classes called the Intents, are predefined during the chatbot building phase. The

Parameter Extractor attempts to locate named entities in the query. Similar to

Intents, these parameters, called Entities, are defined before the chatbot is placed

in operation. The Flow Manager element manages the discourse with the user. Its

job is to make sure that the conversation sounds coherent. The Response Gener-

ator performs the tasks required to process the query and prepare a response for

the user. It may include replying with static messages or invoking a complex pro-

cessing pipeline that requires interacting with elements of the Containing system.

Voice Utils are used when a chatbot supports an audio interface in addition to text

messages. They perform the Speech-to-Text and Text-to-Speech conversions.

Next, we discuss how the Containing system of the chatbot may affect its design.

The System Interface refers to the collection of modes through which the Containing

system interacts with its uses. Common interfaces maybe a website, an app or via

messaging platforms like Messenger, Telegram, WhatsApp or Slack. The chatbot



vii

may be required to face the users at some or all of these interfaces, which can shape

its requirements. Actions are business operations that the chatbot needs to invoke

as part of processing a query, e.g. create new order function of an e-commerce

enterprise. Fulfilments are one or more intermediaries between Actions and the

chatbot, and help in shielding the enterprise’s business operations from the chatbot.

We also suggest a Reference Architecture for any application that contains a

conversational interface. The Reference Architecture puts the different pieces of

chatbots and the Containing system that we discussed before, in a coherent per-

spective. As Concrete Architectures for the Reference Architecture, we highlight

the variations when different chatbot-building platforms are used for the process.

2. How can chatbot-building platforms be evaluated for their effective-

ness for a particular chatbot project?

There are several platforms which can help the chatbot-building process in dif-

ferent capacities. We present three categories of commonly available platforms in

this area, as shown in Figure 1. First, The NLP-as-a-service platforms provide sup-

port for common NLP tasks. They can be used not only for building chatbots but

other applications as well (those which process data in Natural Languages). The

platforms which we term as Conversation-as-a-service solutions, “blackbox” the de-

tails of the background NLP tasks and directly provide features and services which

are essential to the working of a chatbot, such as Intent Classification, Parameter

Extraction and Flow Management. The platforms which we termed as ChatWidget-

as-a-service offerings, often provide a visual editor to create a conversational flow

graph and provide a “chat widget” which may be deployed directly on a medium

(usually one or more messaging platforms).



viii

In this thesis, we study the Conversation-as-a-service (CaaS) platforms

in detail. They provide enough abstractions for the chatbot building process to

take away the worries of implementing core NLP tasks while providing the developers

with enough flexibility to compose chatbots for a wide range of use cases. As a part

of our analysis, we compiled a list of desirable features in these platforms. The list

is in coherence with the Reference Architecture that we proposed. As case studies,

we also present relative rankings for the support of these features on three different

CaaS platforms.

The Hospitality framework is a platform evaluation framework based on Software

Architecture Body of Knowledge. It provides a methodology to compare two or more

platforms based on their support for achieving project-specific quality goals, such as

a Quality Attribute or an Architectural Tactics. We show how this framework can be

used to compare candidate platforms for a chatbot project. As a case study, we apply

the framework to three platforms for a sample chatbot, assuming that the chatbot

needs to achieve high levels of Modifiability, Security & Privacy, Interoperability and

Reliability Quality Attributes.

3. How can a chatbot be defined over a platform?

We discuss the process of defining the use cases that a chatbot is supposed to

serve, over a CaaS platform. These platforms expect the definition of the use cases in

terms of certain pieces of information. In essence, these platforms enforce a pattern

on the definition of a chatbot, which we call as the Contextual Reactive pattern. The

overall idea of the pattern is to express each use case in terms of a context, i.e. what

the user expects the chatbot to do; and a response, i.e. what the chatbot must do

when the context is encountered. The context is defined by declaring a set of Intents

and Entities, and supplying some Examples of relevant user queries associated with



ix

Chatbot and its Environment

Chatbot-building Platforms

Principal Elements of a chatbot

Relevant Elements of the chatbot's Containing system

A Reference Architecture for applications with chatbots

Different types of chatbot-building platforms

Desirable features of a chatbot-building platform

Hospitality of a chatbot-building platform

Contextual Reactive Pattern for chatbot definition

Intent Sets for designing a chatbot

Contributions in this thesis

ICSESS,
Beijing'	19

HCCAI,
Irvine'	20

SQUADE,
Tallinn'	19

EuroPLoP,
Kloster	Irsee'	20

ICCAE,
Sydney'	20

Legend

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Covered in Chapters:

Figure 2: An overview of the contributions in this thesis

them. The response can be defined as static messages, or as a processing pipeline

involving the execution of external business logic.

4. Does the process of defining a chatbot on a platform involve any design

choices?

We present a design choice that arises because of employing the Contextual Re-

active pattern for chatbot definition. The choice that we term Intent Sets, are

essentially different instantiations of the pattern for the same set of chatbot use

cases. We show that the same chatbot can be defined in multiple ways, and the be-

haviour of the built chatbot differs significantly for each case. As proof, we present

the results of some experiments that we performed as part of a case study of three

CaaS platforms. Our results show that the different versions of the chatbot often

provide a different response for the same user query.

The contributions in this thesis are summarised in Figure 2.





Acknowledgements

The list of people who crossed my paths during my PhD is really long. Still, I would

like to mention a few. First, I would like to thank my guide, Dr. T.V. Prabhakar.

It has been more than 10 years now since I met him. All these years, he has been

a great mentor, not just professionally, but also at a personal level. I hope that he

continues to mentor me, even after I complete my PhD requirements.

Next, I would like to thank the Department of Computer Science and Engineering

at IIT Kanpur. In particular, I would like to thank Dr. Vinay P. Namboodiri,

who provided me with his valuable guidance for some allied work in the field of

Privacy Engineering. I am also thankful to all other faculty members, lab staff and

office staff who helped me in numerous ways all these years.

The list of friends I made at IIT Kanpur is too big to be mentioned in even

multiple pages. Still, some deserve a special mention because of how they made

my stay pleasant. To begin with, I would like to thank Puneet Gupta, Deepak

Ojha, Anando Gopal Chatterjee and Ayan Chakraborty to make my days at

Hall-8 memorable. They were the main reasons why I loved Hall-8 so much. I would

also like to mention Naman Bansal, who always treated me as a mentor, while for

me, he has always been like a younger brother. Towards my later days at Hall-8, I

interacted with Arunava Karmakar, a gem of a person, with whom I had many

great conversations in the Mess. I would also like to mention Aditya Desai and

Nishigandha Patil. They have made the campus a much better place for animal

lovers like me. I hope they continue their great work wherever they go.

Next, I would like to thank my friends at my lab, with whom I shared my

moments of joy, grief and frustration. I probably spent more time at KD106 than

my hostel room. This is why I am grateful to Awanish Pandey, Hrishikesh

Terdalkar, Shubhangi Agarwal and Rujuta Pimprikar, Aakanksha Verma,



Arvapalli Sai Susmitha and Sumit Lahiri in KD106. They all ensured that the

lab remained a lively environment for work and relaxation.

As the strength of the PhD candidates at CSE Department has swelled, I may

not have been in touch with much of the newer additions. However, I still spent a

lot of time with many fellow PhD scholars. I have had so many discussions with

Pawan Kumar, a fellow PhD scholar and my M.Tech senior, not only on topics

related to Computer Science but politics and life in general. Tejas Gandhi and

Adarsh Jagannatha have been my round-the-clock troubleshooters. They are

probably the only guys in the Department whom I envy for their skills. A special

mention to Ashish Agrawal, who has almost always been a defacto co-guide to

me. He probably knows the details of each of my work, as much as I do. I would also

like to thank Sumit Kalra for collaborating with me for our work related to Design

Patterns. My discussions with Siddharth Srivastava, Sai Charan Putrevu and

Arun Jain are also going to be a part of my memory.

My parents have been as supportive as parents could possibly be. My father,

even though he has no understanding of my work, tried to find journals for me,

whenever I was down after a rejected publication. I could sense how much he wanted

to help from the efforts he would put in to do so, even at his age. My mother

has always been the strict one in the family about academics. She has always

inspired me to beat the best in whichever test I took up. Her belief in me and my

capabilities often astonish me, but at the same time, makes me work a tad harder

to achieve my goals. For the greater part of our married life, my wife and I have not

stayed together. The idea was to help me do my work with minimal distractions. I,

therefore, must thank my wife, Swati, for understanding our situation, and being

a remote, yet substantial, support for my PhD work. My son, Shaurya, is too

young to know why most of his childhood went away without his father, giving him

more time. Albeit very young, his sacrifice helped me complete my work with little

distraction. In the end, I would like to express my unparalleled love for my late

brother, Gaurav. He was my first career guide, and it really hurts that he is not

around today to see me fulfil one of his own dreams. I hope wherever he is, he finds

solace that I am trying my best to be the brother of his thoughts.

Saurabh Srivastava



Dedicated To

My Family and My Guru





Contents

List of Tables xvii

List of Figures xix

1 Introduction 1

1.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 History of Chatbots . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.2 Selected Previous Work on Chatbot Design . . . . . . . . . . . 5

1.2 Challenges in Building Chatbots . . . . . . . . . . . . . . . . . . . . . 8

1.3 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4 Thesis Organisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 Chatbot and its Environment 17

2.1 Architecture of the Chatbot . . . . . . . . . . . . . . . . . . . . . . . 18

2.1.1 Voice Utils . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1.2 Intent Classifier . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.3 Parameter Extractor . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.4 Response Generator . . . . . . . . . . . . . . . . . . . . . . . 20

2.1.5 Flow Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2 Architecture of the Containing System . . . . . . . . . . . . . . . . . 23

2.2.1 Fulfilments and Actions . . . . . . . . . . . . . . . . . . . . . 23

2.2.2 System Interface . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3 Reference Architecture for the Application . . . . . . . . . . . . . . . 24

2.3.1 Concrete Architecture using Dialogflow . . . . . . . . . . . . . 27

2.3.2 Concrete Architecture using Watson Assistant . . . . . . . . . 29



xiv CONTENTS

2.3.3 Concrete Architecture using Lex . . . . . . . . . . . . . . . . . 31

2.4 Related Work and Further Reading . . . . . . . . . . . . . . . . . . . 31

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 Chatbot-building Platforms 35

3.1 Reasons for Custom Development . . . . . . . . . . . . . . . . . . . . 36

3.2 Types of Chatbot-building Platforms . . . . . . . . . . . . . . . . . . 39

3.2.1 NLP-as-a-Service Platforms . . . . . . . . . . . . . . . . . . . 40

3.2.2 Conversation-as-a-Service Platforms . . . . . . . . . . . . . . . 41

3.2.3 ChatWidget-as-a-Service Platforms . . . . . . . . . . . . . . . 42

3.3 Dashboards on Chatbot-building Platforms . . . . . . . . . . . . . . . 43

3.3.1 CWaaS Platforms . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3.2 CaaS Platforms . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4 Desirable Features of a Chatbot-building Platform . . . . . . . . . . . 50

3.4.1 Features for Intents Management . . . . . . . . . . . . . . . . 51

3.4.2 Features for Entities Management . . . . . . . . . . . . . . . . 54

3.4.3 Features for Defining Fulfilments . . . . . . . . . . . . . . . . 56

3.4.4 Features Related to Integrations . . . . . . . . . . . . . . . . . 59

3.4.5 Features for Managing Conversational Flow . . . . . . . . . . 61

3.5 Hospitality of a Chatbot-building Platform . . . . . . . . . . . . . . . 63

3.5.1 Understanding Hospitality . . . . . . . . . . . . . . . . . . . . 63

3.5.2 Using Hospitality . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.6 Case Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.6.1 Sample application of the Hospitality Framework . . . . . . . 72

3.6.1.1 Phase 1: Identify Quality Attributes . . . . . . . . . 72

3.6.1.2 Phase 2: Identify Architectural Tactics . . . . . . . . 74

3.6.1.3 Phase 3: Identify Platform Features . . . . . . . . . 76

3.6.1.4 Phase 4: Evaluate Platforms . . . . . . . . . . . . . . 77

3.6.1.5 Phase 5: Calculate Hospitality Indices . . . . . . . . 77

3.6.2 Support of Desired Features in Three Platforms . . . . . . . . 80

3.7 Related Work and Further Reading . . . . . . . . . . . . . . . . . . . 81

3.8 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86



CONTENTS xv

4 Contextual Reactive Pattern 89

4.1 Pattern Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.1.2 Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.1.3 Forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.2 Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.2.1 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.2.2 Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.2.3 Deployed Chatbot’s Sketch . . . . . . . . . . . . . . . . . . . . 98

4.3 Pattern Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.3.1 Dialogflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.3.2 Watson Assistant . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.3.3 Lex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

4.4 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.4.1 User Stories . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

4.4.2 The First Sprint . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.4.3 The Second Sprint . . . . . . . . . . . . . . . . . . . . . . . . 111

4.4.4 Comparison of Sprint Deliverables . . . . . . . . . . . . . . . . 114

4.5 Consequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

5 Intent Sets 121

5.1 Intent Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.1.1 Properties of Intent Sets . . . . . . . . . . . . . . . . . . . . . 125

5.2 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.2.1 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . 129

5.2.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.3 Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.3.1 The Accuracy Experiment . . . . . . . . . . . . . . . . . . . . 139

5.3.2 The Order Experiment . . . . . . . . . . . . . . . . . . . . . . 141

5.3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

5.4 Related Work and Future Reading . . . . . . . . . . . . . . . . . . . 143

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144



xvi CONTENTS

6 Conclusions and Future Work 145

6.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

Appendices 151

A Guide to Privacy Policy Resources of Selected Platforms . . . . . . . 153

B Explanations for Selected Values in Table 3.12 . . . . . . . . . . . . . 157

C Comparison of the Elements of Contextual Reactive Pattern . . . . . 161

References 165

Index 189

Publications 189



List of Tables

3.1 Intents Management Features . . . . . . . . . . . . . . . . . . . . . . 52

3.2 Entities Management Features . . . . . . . . . . . . . . . . . . . . . . 54

3.3 Fulfilments Management Features . . . . . . . . . . . . . . . . . . . . 57

3.4 Integrations Management Features . . . . . . . . . . . . . . . . . . . 60

3.5 Conversational Flow Management Features . . . . . . . . . . . . . . . 61

3.6 Finding Tactics for Quality Attributes . . . . . . . . . . . . . . . . . 75

3.7 A comparison between possible conversations for the Fruit Seller chat-

bot, with and without digression support . . . . . . . . . . . . . . . . 76

3.8 Using Platform Features for calculating Hospitality Index, at Tactic

level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.9 Availability of useful platform features in three candidate platforms . 79

3.10 Hospitality Indices at Tactic level for the three candidate platforms . 80

3.11 Hospitality Indices at QA level for the three candidate platforms . . . 80

3.12 Relative support of the Desired Features on three platforms . . . . . 82

5.1 An Example Table containing data related to phones in an inventory 122

5.2 Possible Intents for the phoneBot . . . . . . . . . . . . . . . . . . . . 123

5.3 Two possible Intent Sets for phoneBot . . . . . . . . . . . . . . . . . 124

5.4 Some rows from the table c. The Shaded columns are “output” at-

tributes, used for preparing responses. . . . . . . . . . . . . . . . . . . 130

5.5 A part of training data for the statistical Intents in Intent Set1 . . . . 133

5.6 A part of training data for the statistical Intents in Intent Set2 . . . . 134

5.7 Dissimilarity Scores on Dialogflow and Watson Assistant . . . . . . . 142



xviii LIST OF TABLES



List of Figures

1 Solution stacks offered by different Chatbot-building Plat-

forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

2 An overview of the contributions in this thesis . . . . . . . . . ix

1.1 Typical stages of development for a traditional component . . . . . . 10

1.2 Typical stages of development for a component employing ML tech-

niques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 Organisation of the thesis along with major contributions . . . . . . . 16

2.1 The Logical View of a chatbot . . . . . . . . . . . . . . . . . . . . . . 18

2.2 The Logical View of the chatbot’s Containing system . . . . . . . . . 23

2.3 A Reference Model for the Containing system . . . . . . . . . . . . . 25

2.4 Proposed Reference Architecture for the Containing system . . . . . . 26

2.5 Example Concrete Architecture for a Containing system when Di-

alogflow is used for building the Conversational subsystem . . . . . . 28

2.6 Example Concrete Architecture for a Containing system when Wat-

son Assistant is used for building the Conversational subsystem . . . 30

2.7 Example Concrete Architecture for a Containing system when Lex is

used for building the Conversational subsystem . . . . . . . . . . . . 32

3.1 Solution stacks offered by different Chatbot-building Plat-

forms along with some examples . . . . . . . . . . . . . . . . . . 39

3.2 A view of the ManyChat Visual Editor, clipped from an image at [1] . 42

3.3 A sample interaction with Lufthansa Airlines Chatbot [2] on Messenger 44

3.4 Screenshots from the Chatfuel dashboard . . . . . . . . . . . . . . . . 45

3.5 Screenshots from the Dialogflow dashboard . . . . . . . . . . . . . . . 48



xx LIST OF FIGURES

3.6 Screenshots of the Watson Assistant Dialog Tree . . . . . . . . . . . . 49

3.7 Top-level categories of desired platform features . . . . . . . . . . . . 51

3.8 A sample conversational session between a chatbot and a user . . . . 62

3.9 Different phases in application of the Hospitality Framework . . . . . 66

3.10 Examples of Feature Cards for two different features and platforms . 68

3.11 An overview of the Hospitality Indices Calculation process . . . . . . 71

3.12 Software Architect’s notes, representing the requirements for the Fruit

Store applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.1 Building Chatbots using a platform with the Contextual Reactive pat-

tern . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.2 Solution Structure : How Entities, Intents, Examples and Fulfil-

ments interrelate to each other in an application. . . . . . . . . . . . 96

4.3 Solution Dynamics : How a platform uses Entities, Intents, Exam-

ples and Fulfilments for building the chatbot. . . . . . . . . . . . . . 98

4.4 Deployed Chatbot’s Sketch : How the platform uses the built

NLP models along with the defined Fulfilments to construct the chat-

bot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.5 Deployed Chatbot’s Sketch : Typical workflow observed during

the operation of a chatbot. . . . . . . . . . . . . . . . . . . . . . . . 99

4.6 Chanakya Airlines Chatbot: Handling use cases of future iterations . 115

4.7 Chanakya Airlines Chatbot: Updating implemented use cases . . . . 116

5.1 Sample Conversations with Cricket Novice . . . . . . . . . . . . . . . 128

5.2 Snapshot of a document containing some basic information about the

game of Cricket. Each paragraph can be read independently as a

different document. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5.3 The statistical Intents for Cricket Novice. The descriptive and

default Intents were common in both Intent Sets, and hence, not

shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.4 A rough sketch of processing of a user query when the two Intent Sets

shown in Figure 5.3 are put in use . . . . . . . . . . . . . . . . . . . . 139

5.5 Utility Scores for Cricket Novice on different platforms . . . . . . . . 140



Chapter 1

Introduction

A chatbot is a software component that can interact with a human being in some

Natural Language, such as English. A survey that was taken by 800 top-tier business

executives in 2017 estimated that four out five businesses want to have a chatbot by

the year 2020 [3]. The respondents, which included Senior Sales Executives, Senior

Marketers and Chief Marketing Officers explained that they are looking to employ

chatbots for different tasks associated with Marketing, Sales as well as Customer

Support. The domains where chatbots are operating include E-commerce, Digital

Healthcare, Legal Advisory and News Reporting, among others [4]. Chatbots pro-

vide a Conversational Interface to an application, which the businesses intend to use

to their advantage.

Simple chatbots can be built primarily using Regular Expressions (regexes) [5]

[6]. However, regexes have their limitations. They cannot, for instance, be used to

capture semantic variations of the same concept or phrase (e.g. a regular expres-

sion for man cannot capture human, even though they may have the same intention

in a conversation). While regexes are certainly useful, they are usually employed

for only localised tasks associated with a chatbot, for instance, for identifying an

email address or a phone number. Almost all chatbots built today use some form

of Artificial Intelligence (AI). Two common flavours of AI systems are Rule-based

systems and systems based on Machine Learning (ML). Sometimes the terms ML

and AI are used interchangeably in the context of chatbots, essentially disregarding

Rule-based approaches as an example of AI [7] [8] [9].

The operation of Rule-based chatbots is similar to following a flow-chart. For



2 Introduction

any received user query, a series of rules are evaluated to arrive at a juncture where

a response can be sent back to the user. It makes them ideal for implementing a

finite set of use cases, albeit with a backup mechanism of transferring the control to a

human being, in case the chatbot cannot apply any of the available rules successfully

[7]. Thus, the process of “training” a Rule-based chatbot involves mining more rules

from customer interactions, especially when the chatbot failed to apply any existing

rule. Despite their limitations, Rule-based chatbots have the advantage of simplicity

and explainability, i.e. their behaviour can be accurately predicted and modified.

For some businesses, they may be enough to cater to the requirements [9].

Another approach to building chatbots involve “training” the chatbot with data.

This approach, based on ML techniques, involves building “models”, which perform

the core Natural Language Processing (NLP) tasks that a chatbot is required to

perform. An important task associated with a chatbot is to identify the overall

intention of a user query (e.g. is it an enquiry related to buying a new product or

a complaint about a sold product). It is because queries with different intentions

usually have to be processed differently. Another task for the chatbot is to spot

instances of any relevant input data in the user’s query, which may be necessary

for processing it (e.g. parsing the name of the product from the user’s statements).

Many platforms that aid in building chatbots perform these tasks behind the cur-

tains. The developer is only required to supply some sample data to the platform,

and the chatbot is equipped with models to do these tasks automatically.

A system that employs chatbots has Architectural Issues, similar to any other

system. In this work, we investigate these issues and present our contributions

towards enhancing the Software Architecture Body of Knowledge in the domain.

The rest of this chapter is organised as follows; Section 1.1 presents an overview

of relevant previous works related to chatbot’s history and design. Section 1.2

discuss the reasons why studying the architectural issues associated with chatbots

and systems with conversational interfaces in general, is of interest. 1.3 provides a

brief introduction to the Research Questions that we address in the current work.

1.4 provides an overview of our contributions and their discussion across various

chapters.



1.1 Literature Review 3

1.1 Literature Review

The current state-of-the-art of the chatbots is fueled by much work in the past

decade. We start by presenting a brief history of chatbots. An inspection of this

history also provide hints to the challenges associated with a chatbot. While some of

these have been resolved to some extent, others remain prominent. We then proceed

to discuss some relevant related work, i.e. previous contributions that discuss some

architectural aspects of chatbot development.

1.1.1 History of Chatbots

The first attempt at building a chatbot, materialised in 1966, was ELIZA [10].

ELIZA was built with the help of pattern matching and a set of rules which picked

one response out of a limited set of possibilities. ELIZA could operate over “scripts”

- a collection of rules and responses to take discourse in a conversation. The most

famous script of ELIZA was one where it pretended to be a psychotherapist. A major

achievement often associated with ELIZA was the reaction of users interacting with

it. People shared complex thoughts with ELIZA as if it was a human being.

Next major milestone for chatbots is considered to be PARRY, which came out

in 1972. PARRY pretended to be a patient of paranoia [11]. When interacting with

PARRY, more than half of the psychiatrists were not able to differentiate between

PARRY and a real patient of paranoia. The findings were made over a modified

version of the Imitation Game proposed by Alan Turing in 1950 (commonly referred

to as the Turing Test [12]). Even though PARRY too produced responses from a

limited set, it used a complex mathematical model based on “mistrust”, a common

problem with people who suffer from paranoia. From the perspective of processing

inputs in a Natural Language, PARRY was significantly sophisticated as compared

to ELIZA.

While ELIZA and PARRY tried playing specific roles, Jabberwacky [13] was

aimed to be a general chatbot, intending to impress people with casual conversa-

tions. The project started in 1988, and it was launched on the internet in 1997. Jab-

berwacky did something that its predecessor did not do - it collected the responses

provided by the users and added them to its database. It allowed Jabberwacky to

update its responses over time, rather than using a fixed set of pre-defined responses.



4 Introduction

The responses of Jabberwacky are chosen through a process that the author, Rollo

Carpenter, terms as “contextual pattern matching”. There are no official descrip-

tions of what the term means or how the chatbot works. Nevertheless, Jabberwacky

boasted itself of being a chatbot driven by AI, and that it is unique when compared

to its predecessors. Its successor, Cleverbot [14] has now replaced Jabberwacky.

Dr. Sabaitso [15], another chatbot that pretended to be a psychologist, appeared

around 1991-92. It did not differ much in capability from ELIZA, repeating certain

questions like “WHY DO YOU FEEL THAT WAY?” often. However, its major

significance is in the field of speech synthesis. Dr. Sabaitso could “speak back” to

its users (although the users still had to type their responses). It was distributed

with various sound cards and worked over the Microsoft DOS operating system.

Although the voice did not sound “humanly”, it is still considered one of the early

attempts at generating speech, an attribute which is relatively common in many

modern-day chatbots.

In 1995, Richard Wallace developed a chatbot called Artificial Linguistic Internet

Computer Entity or A.L.I.C.E. It was inspired by ELIZA and powered by an XML

dialect called the Artificial Intelligence Markup Language (AIML). A.L.I.C.E. won

the Loebner Prize thrice (an annual competition in the field of artificial intelligence),

even though it could not pass the Turing Test. A.L.I.C.E. showed the power of

AIML, a simple language to express pattern-based rules for a chatbot. AIML can be

used to define general patterns using wildcards, and configure templates to respond

to these patterns [16]. Mitsuku [17], a chatbot built over AIML, initially launched

in 2005, has won the Loebner Prize five times, the most recent one in 2019.

By the time Elbot (2000) [18] and SmarterChild (2001) [19] came out, chatbots

had become far more sophisticated. Their creators openly bragged the use of AI;

however, the details of the workings of the chatbots were seldom revealed. Elbot

also won the Loebner Prize and is known to provide responses filled with sarcasm.

SmarterChild was a chatbot that interacted with users of AOL Messenger. The idea

was to provide basic information to users about weather, stocks or movie timings.

The beginning of the modern chatbot era can probably be traced to the success

of IBM Watson [20], whose development started around 2005-06. Although Watson

was not precisely a chatbot in the conventional sense (a more accurate term being

question-answering system), it did increase the confidence of researchers in handling



1.1 Literature Review 5

NLP tasks with much higher precision. In 2011, it defeated two former champions

of the popular television show called Jeopardy!, making a strong case for machines

performing tasks that were thought to be doable by humans only. In the show,

the contestants were given clues in the form of answers, and they were supposed to

frame a question to match the same. It was an effort which involved processing a

huge volume of data in a limited amount of time to come up with a response. IBM

has since launched many AI products and services, including their chatbot-building

platform called Watson Assistant [21]. Today, there are more than 50 business

entities that provide support for building chatbots [22], all of them being founded

in the post-Watson era (after 2008).

Finally, a special class of chatbots that we must mention here are those who fall

in the category of Assistants. Apple’s Siri [23], Google’s Assistant [24], Microsoft’s

Cortana [25] and Amazon’s Alexa [26] are some examples. These chatbots have

evolved into an environment, where multiple pluggable applications co-exist as part

of an ecosystem. They can perform common tasks on their own (e.g. searching

for a keyword on the internet). At the same time, more specific behaviours can be

interacted with by invoking them explicitly (e.g. an app on Google Assistant can be

invoked by saying “talk to ¡app name¿”). Some of these environments also provide

a platform to build chatbot applications (e.g. [27] and [28]).

1.1.2 Selected Previous Work on Chatbot Design

Brandtzaeg et al. [29] present an interesting discussion over the need to rethink our

user interfaces in the era of the Chatbot revolution. Some work has already started

towing this line (e.g. [30] and [31]) as more systems are built with conversational

interfaces ([32] [33] [34] etc.). The contribution by Allen et al. [35] is a good start-

ing point to understand the basic aspects of building conversational components. It

talks about many design decisions that are relevant when building a chatbot. For

instance, the Model-View-Controller (MVC) [36] approach to building systems in-

spires architects to decouple the user interface from the business logic (models and

controllers). The idea behind reducing this coupling is that both can be changed

with minimal effect on each other. Allen et al. describe how the design of the user

interface can significantly change the capability of the chatbot. For example, if the



6 Introduction

user interface has a “push-to-talk button”, the chatbot needs to have a capability

to process multiple statements from the user in one go. On the other hand, in an

“open-mike” scenario, where both the chatbot as well as user can communicate any

time they wish, the chatbot must decide when is it its turn to speak (and when the

turn is with the user). The discourse management in both these cases will be very

different. They divide the core responsibilities of the chatbot into three co-operating

major categories. The Interpretation Manager (IM) deals with issues such as cate-

gorising an input statement as a problem (e.g. “the room is locked”) or the initiation

of a new goal (e.g. “the room needs to be opened”). The IM parses the user utter-

ances and decides upon what type of processing must be initiated. The Behavioral

Agent (BA) is where the core business logic associated with the chatbot lies. BA is

responsible for actually performing the tasks that are required at a particular stage

(e.g. finding the solution to the user’s problem). BA is connected to the rest of

the world and can initiate events in, and receive notifications from the outer world.

The Generation Manager (GM) is responsible for the system’s discourse. It receives

inputs from the BA, as well as any discourse-related information created by the IM

(e.g. the turn information) and plans when and what to generate as the response.

The work by Allen et al. is more at a conceptual level. Pilato et al. [37] describe

a “modular architecture” for building chatbots. They too define three significant

categories of modules. The modules associated with the Dialogue Engine class are

responsible primarily for parsing the user’s inputs for various reasons as per the

requirement. For example, there could be a module which classifies the user’s tone

as positive, negative or neutral. Another module may detect synonyms of specific

terms from a dictionary and may replace them before any further processing takes

place. The task associated with modules of Dialogue Analyser includes looking for

information in the inputs which are required for processing the query. It may include

modules to detect the topic of current conversation (e.g. is it about buying a product

or initiating a return), details related to the topic (e.g. a product’s name) and any

contextual information (e.g. is the current user permitted to perform the requested

action or eligible to get the sought information). Based on the processing, a set of

“context variables” are prepared, which essentially represent a state of the system.

Finally, the modules related to Corpus callosum use the values of these variables to

pick one out of many possible modules to perform the relevant task and return a



1.1 Literature Review 7

suitable response. In the paper, they show the use of a Bayesian network to activate

the right module over a case study.

Other than the above, the Senior Thesis work by [38] by Cahn can also act as

a quick primer on the underlying tasks that a chatbot needs to perform. The work

covers the major alternatives available to implement various stages of a chatbot

such as Speech-to-Text Conversion, NLP, Response Generation and Text-to-Speech

Conversion. The work majorly covers algorithmic aspects of these tasks, discussing

possible implementation techniques that may be employed for each phase. Another

work which stands out from the rest is the application of the i* modelling framework

[39] over chatbot design process is by Babar et al. [40]. The framework is intended

to model goals and their dependencies on actors. They divide all the chatbots into

two major categories (Retrieval-based and Generative chatbots) and present their

envisioned models for both. In addition to papers, there are a number of articles and

blogs ([41] [42] [43] [44] to mention a few) which discuss almost the same concepts

as discussed in [38] at abstract levels.

Lastly, there are articles which talk about building chatbots, with concepts that

are more aligned with modern chatbot-building platforms ([45] [46] [47] [48] are some

examples). This is because most of the platforms enforce a definition pattern for

defining a chatbot. We discuss this pattern in detail in Chapter 4. This definition

pattern that we call the Contextual Reactive Pattern abstracts the core NLP tasks

associated with the chatbot (which are now handled in a “blackboxed” fashion). It

allows the developers to concentrate on the business use cases that the chatbot has

to serve. The highlights of the works we discussed are summarised below:

• The chatbot needs to implement some core NLP tasks to parse the user query

for extracting essential information.

• There needs to be a management of the overall conversation with the user to

allow flexibility and maintain coherence.

• The business logic that a chatbot needs to access, in order to perform the

expected tasks, should be kept separate from the core tasks of the chatbot.

• The user interface of the chatbot is crucial. It may dictate the core tasks that

the chatbot must perform.



8 Introduction

1.2 Challenges in Building Chatbots

The recent rejuvenation of chatbots can be largely owed to advancements in In-

formation Retrieval (IR) though Neural Networks (some of the works which cover

them in detail are [34] [49] and [50]), which in turn, often rely on ML techniques

[51] [52] [53]. The ML techniques are usually better at handling challenges where

it is difficult to write down a set of finite rules to perform the task. Some of the

challenges faced by a chatbot which fall in this category are:

• Handling variations in Natural Languages: Chatbots deal with Natural

Languages. Natural Languages have several variation points. For instance, the

same word may be pronounced with significantly different accents in different

geographic locations. A model that deals with converting the speech fragments

to the corresponding text must have enough data to cover all these accents,

or, the conversion may have severe errors. Other examples include use of

sarcasm (the literal meaning is different from the intention), use of synonyms

and homonyms and handling statements in both Active and Passive Voice.

Thus, it is practically intractable to provide data that can cover all possible

variations for any of the core NLP tasks. This makes a strong case to use ML

techniques for the same to interpolate cases where data is unavailable.

• Expectation of worldly knowledge: Usually the expectations from a soft-

ware component are well-defined. Consider the case of a Cab-booking System

with a web form to fill out the details of the user’s demands. The form asks

the user to specify all the required and optional information (such as Source

and Destination address, time and date for the cab and preferences about the

driver) in text-boxes. The user supplies this information, clicks on a button

called “book”, and the cab is booked. Now imagine the Cab company employ-

ing a conversational interface for the same. On asking the user, “What time

do you want the cab?”, she replies with “3 in the morning”. What she means

is “3 AM”, but the chatbot may be misled by the word “morning”, not able to

grasp that the term contextually means past-midnight here. A chatbot often

has to deal with such scenarios, where it is expected to have “common sense”.

In general, it is better to let a model learn these details through an appropriate



1.2 Challenges in Building Chatbots 9

ML technique from the supplied data than to encode them explicitly.

• Constant self-update to be in touch with the real-world: The interfaces

that a traditional software component provides does not change so often. Con-

trols like Text-boxes, lists, combo-boxes and radio buttons have been around

for a long time and expected to be around in the near future too. Their

operation and semantics are well-understood. However, Natural Languages

have their evolution graphs. A particular word or phrase may suddenly have

a new meaning, or a rarely used word may become popular overnight. The

chatbot must be updated periodically to handle these new variations in the

Natural Language. It may be too difficult for humans to track these changes

and update the rules manually. A feasible alternative is to employ some ML

technique which can update the models “online”, i.e. while they are in use

[54].

It is therefore nor surprising for most of the modern-day chatbots to use ML

techniques for one or more of their core tasks. However, while ML techniques cer-

tainly have their advantages, they do have their liabilities as well. Figure 1.1 and

1.2 capture the difference between the development process with and without the

use of ML techniques respectively.

For a traditional component, the development process can be simplified as fol-

lows; the developers write code, implementing the requirements related to the com-

ponent. A set of tests are then performed over the code. If all the tests pass, the

component is deployed. If even a single test fails, the developers debug the code,

find the problems, rectify it, and the cycle is repeated.

In contrast, the development of an AI component involves building models along-

side writing code. A set of tests are then run on the component, which primarily

evaluates the inferencing capabilities of the models. Depending on the component,

this evaluation will produce some results. If the results are “unsatisfactory”, the

developers retrain the models. This may involve steps like adding more training

data, filtering existing data to remove noise and tweaking the meta-parameters of

the learning technique. While these techniques have proven their mettle when it

comes to achieving high accuracy rates, they also have issues related to explainabil-

ity [55] [56]. In particular, Deep Learning methods, arguably the most popular of



10 Introduction

(a) Code is written (b) Tests are performed

(c) [i ] When all Tests pass (c) [ii ] When some Tests fail

Figure 1.1: Typical stages of development for a traditional component

(a) Code is written, models are built (b) Tests are performed

(c) [i ] When results are satisfactory (c) [ii ] When results are not satisfactory

Figure 1.2: Typical stages of development for a component employing ML techniques



1.2 Challenges in Building Chatbots 11

all ML techniques today, suffer from this issue significantly. This is why it is usually

not possible to explain why the models perform poorly over specific inputs, and con-

sequently, it is challenging to change models with surgical precision. The cycle to

build new models and evaluate them continues, until the results are “satisfactory”.

Here, satisfactory does not mean that they do well over all the inputs; it means that

they do reasonably well over a wide array of inputs.

Most of the chatbots built using popular platforms today, follow the same de-

velopment process, as shown in Figure 1.2. The developers provide some training

data to the platform. The platform builds some models in the background (usually

the details of this process is hidden from the developer) to perform the core NLP

tasks associated with the chatbot. The developers evaluate the quality of the chat-

bot by firing some queries at the built chatbot and comparing the response with

the expected output. If the chatbot’s responses are “good enough”, it is deployed.

Otherwise, the developers repeat the cycle. These platforms provide sophisticated

dashboards for every stage to make the overall process as smooth as possible.

We can now conclude that the biggest challenge in building a chatbot today is

handling uncertainties. Developers often use ML techniques to avoid writing rules

for core NLP tasks associated with a chatbot. Most chatbot-building platforms

provide access to these tasks, through easy to use dashboards. The developers are

only expected to provide training data, and the platform builds a chatbot for the

use case, building the necessary models. Even though it speeds up and simplifies

the development process greatly, the chatbots built this way are not perfect. For

some inputs, they fail in one or more ways. What complicates the problem further,

is that the inputs over which the chatbot would fail cannot usually be predicted

before deployment. Provided that the testing phase can only test a handful of

possible utterances that a chatbot will receive, this leaves a quantum of uncertainty

in the behaviour of the chatbot. This uncertainty can create a ripple effect. For

example, the chatbot may initiate an action in the real world, which the user did

not intend. Therefore, the overall Containing system housing the chatbot needs to

plan for this uncertainty by putting fail-safe mechanisms at different stages. This

provides a motivation to study not only the chatbots but also the systems which

employ them. In the current work, we investigate the architectural issues associated

with these systems and highlight some of their prominent design decisions.



12 Introduction

1.3 Research Questions

The questions that we investigate in this work are summarised below:

• What is the architecture of a typical chatbot? What relationship does it share

with its Containing system?

Building a chatbot from scratch would require implementing some core NLP

tasks. Even when a platform is used for building the chatbot, a broad un-

derstanding of these tasks can be helpful while crafting a training dataset.

An understanding of these pieces in the bigger puzzle can also help tweak the

meta-parameters of any ML techniques being employed in the chatbot. The

Containing system that the chatbot eventually gets integrated with is also im-

pacted by the addition of the conversational components. This impact can be

seen in reverse as well, i.e. the chatbot’s architecture is also affected by the

architecture of the Containing system. A possible way to show these relation-

ships is using Reference Architectures. Reference Architectures do not enforce

strict constraints on the architecture of a system, but rather, provide hints

or guidelines for building these systems. Thus, coming up with a Reference

Architecture for systems with chatbots is a vital research objective that we

attempt to achieve.

• How can chatbot-building platforms be evaluated for their effectiveness for a

particular chatbot project?

There are several chatbot-building platforms that offer different types of offer-

ings. Analysing their capabilities, and grouping them into various categories

is an important starting point in their study. Platforms usually aim to pro-

vide a set of features which can help with the implementation of common use

cases. For any chatbot project, there are specific requirements and constraints.

Based on these, different chatbot-building platforms may be less or more use-

ful. Studying the common features that these platforms provide, and then,

evaluate their usefulness for a particular project is an interesting problem. A

possible way to do this evaluation is with the help of Quality Attributes. We

propose the use of the Hospitality Framework for the same. The framework,



1.4 Thesis Organisation 13

which has been applied on Cloud platforms before, can be used for evaluation

of chatbot-building platforms as well.

• How can a chatbot be defined over a platform?

The requirements for any project is usually collected in the form of standard

templates. For instance, for Agile development, requirements are often ex-

pressed in the form of User Stories. When a chatbot-building platform is

used, these use cases must be defined in a form that the platform can under-

stand. We show how the platforms essentially enforce a pattern in this regard.

The developer must map the use cases in terms of this pattern. In this work,

we present this pattern which we call as the Contextual Reactive Pattern. We

also discuss the advantages and limitations of this pattern.

• Does the process of defining a chatbot on a platform involves any design

choices?

Consider a query that a chatbot is supposed to answer - “Who won the Men’s

Gold Medal for 100m Sprint in the last Olympics?”. The query can either be

called as a “query about Male athletes” or a “query about last Olympics”. In

essence, both of these are perspectives or views to see the same data. The

impact of using one of these perspectives over the other on the chatbot is

worth studying. In this work, we introduce the concept of Intent Sets. When

a chatbot is defined over a platform, the developer can do so in more than one

way. Each Intent Set represents one such way. We present the results of some

experiments to comment on the importance of Intent Sets in the development

of a chatbot.

1.4 Thesis Organisation

The thesis is organised into six chapters. A concept map showing the major con-

tributions, as well as the chapters which cover them is shown in Figure 1.3. The

current chapter was devoted towards introducing chatbots, present a historical per-

spective of towards their design and a brief overview of the research problems we

have attempted to solve.



14 Introduction

Chapter 2 discusses the chatbot and its environment in detail. First, we discuss

the core elements of a chatbot. The tasks that these elements perform can either be

done through custom implementation or provided as part of a solution developed

with a platform. Second, we talk about how the architecture of the Containing

system is affected by the chatbot and vice versa. Third, we present a Reference

Architecture for end-to-end applications having conversational capabilities. This

Reference Architecture is designed assuming that a platform provides a significant

part of the chatbot solution. We also present three Concrete Architectures derived

from this Reference Architecture. These architectures essentially highlight the dif-

ferences between the offerings of these platforms.

Chapter 3 investigates the next phase of the architecting process, i.e. provided

that a platform is to be used for building the chatbot, how do we evaluate possible

candidates? We begin by presenting the application of the Hospitality Framework

on chatbot-building platforms. We walk through the different phases of the frame-

work by picking a set of simple chatbot use cases. We show how this analysis could

be done for the sample use cases over three popular platforms - Google Dialogflow,

IBM Watson Assistant and Amazon Lex. The application of the Hospitality Frame-

work requires mapping the required use cases to a set of Quality Attributes. The

application achieves each Quality Attribute (QA) with the help of one or more Tac-

tics, which, in turn, require some support from the platform for realisation. The

support from the platform can be evaluated in terms of their exposed features.

We conclude the chapter by presenting a hierarchical list of desirable features in a

chatbot-building platform. We also present a report on their relative support in the

three platforms mentioned above.

Chapter 4 initiates a discussion about the phase of defining a chatbot on a

platform. Most of the platforms seek the definition of these use cases in a particular

format. It means that the developer must map the use cases into a definition pattern

in order to use the platform. We name this pattern the Contextual Reactive Pattern

for defining a chatbot. We show that the pattern forces the developer to model

all the use cases in terms of two major elements - a context, and an associated

reaction. A context captures a pool of user queries which can be naturally grouped

under one category, e.g. “pricing related queries on an e-commerce portal”. The

reaction provides details of how the chatbot should respond, in case it encounters



1.4 Thesis Organisation 15

that particular context. We discuss how this definition pattern can support the

development of a chatbot over multiple iterations. To show that, we walk through

the implementation details of a sample chatbot over two iterations, and show how

the pattern allows developers to take care of some of the uncertainties that we

discussed in Section 1.2.

We present the final contribution of this thesis in Chapter 5. In general, the

use cases of a chatbot can be mapped to the Contextual Reactive Definition Pattern

in ways than one. Here, we introduce the concept of Intent Sets. An Intent Set

represents one of many ways to define the same set of chatbot use cases. We show

that even though theoretically, all of these Intent Sets should be equivalent to each

other, but in practice, they are not. To show how widely the behaviour of the

defined chatbot varies with Intent Sets, we pick a particular class of chatbots called

the Information Retrieval chatbots. These chatbots process a user query to fetch

information from a data source, such as a table. We pick these chatbots because they

can be easily evaluated in a quantitative setting by inspecting the data items that

they pulled from the data source while processing a request. We can evaluate if their

processing was correct, incorrect or partially correct by comparing their response

with the expected response. We show the results of our experiments performed over

three platforms with two Intent Sets for the same sample chatbot. The results show

how picking one Intent Set over another can significantly change the behaviour of

the chatbot, considering the same training data was used in all cases.

The Conclusion and pointers to the Future Work are provided in Chapter 6.



16 Introduction

Legend

Chatbot

This Thesis

investigates Architectural issues
associated with a

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Covered in Chapters:

Custom
Development

Platform-aided
Development

that can be
built throughthat can be

decomposed into itsthat must be
integrated with its

Reference
Architecture for

applications with
chatbots

Architectural
Elements

Containing
System

which can be
explained using a

1

Different types of
chatbot-building

platforms

Desired features on
a chatbot-building

platform

which requires a
knowledge of

which is easier if
the developer is 

aware of the

Hospitality of the
chatbot-building

platform for a given
set of Quality goals

for which the support
of a platform can be

measured by evaluating the

2 3

Defining the chatbot
on a chatbot-

building platform
with the Contextual

Reactive Pattern

which
involves

which demands

Designing an
appropriate Intent
Set to express the
chatbot use cases

4

Legend

Covered in Publications:

1

2

3

4

5

Saurabh Srivastava and T.V. Prabhakar. A Reference Architecture for Applications with Conversational Components. 
In ICSESS, Beijing, China. IEEE, 2019.

Saurabh Srivastava and T.V. Prabhakar. Hospitality of Chatbot building Platforms. 
In SQUADE, Tallinn, Estonia. ACM, 2019.

Saurabh Srivastava and T.V. Prabhakar. Desirable Features of a Chatbot-building Platform. 
In HCCAI, Irvine, USA. IEEE, 2020.

Saurabh Srivastava, Sumit Kalra, and T.V. Prabhakar. Contextual Reactive Pattern on Chatbot-building Platforms. 
In EuroPLoP, Kloster Irsee, Germany. ACM ICPS, 2020.
Saurabh Srivastava and T.V. Prabhakar. Intent Sets - Architectural Choices for Building Practical Chatbot. 
In ICCAE, Sydney, Australia. ACM ICPS, 2020.

Figure 1.3: Organisation of the thesis along with major contributions



Chapter 2

Chatbot and its Environment

This chapter digs deeper into the first step in the building process of a chatbot. We

refer to the system which employs the chatbot as a component, as the Containing

system throughout this chapter. We analyse the following issues related to building

chatbots in this chapter:

• What are the major elements of a chatbot, that should be implemented, or,

used as a component or service?

• What is the architecture of a typical Containing system? How does it affect

the design of the chatbot and vice versa?

• Are there any design guidelines to build an end-to-end application having the

conversational capabilities?

This chapter is organised as follows; Section 2.1 presents the major elements of a

typical chatbot. Section 2.2 discusses the architecture of the Containing system, in

particular, those that are relevant for the chatbot. Section 2.3 presents a Reference

Architecture for an end-to-end application containing a conversational interface.

We also show examples of some Concrete Architectures based on the presented

Reference Architecture, with the assumption that a platform was used to aid chatbot

development. Section 2.4 presents some related works which can be pursued for

further reading. Finally, we summarise the chapter in Section 2.5.



18 Chatbot and its Environment

Chatbot

Voice
Utilities

Intent
Classifier

Parameter
Extractor

Response
Generator

Flow
Manager

Figure 2.1: The Logical View of a chatbot

2.1 Architecture of the Chatbot

We now present the major elements that a chatbot component contains. Figure

2.1 presents an overview of these elements, along with some of the relevant com-

ponents in the Containing system. The knowledge of these elements is essential if

the chatbot is to be built through a custom development process. Even though,

most of the platforms “blackbox” some of these elements, this knowledge provides

a solid background which can be helpful in tweaking exposed meta-parameters on a

chatbot-building platform. We now discuss each of these elements in brief.

2.1.1 Voice Utils

Voice Utilities (or Voice Utils) are relevant for chatbots which expose a Voice End-

point for communication. There are two types of Voice Utilities that such a chatbot

may require. The first kind are the Speech-to-Text Utils. It is essential because all

the available libraries and services for performing NLP tasks expect the input to be

in textual format (i.e. they cannot work directly over an audio file). The second

kind includes the Text-to-Speech Utils. These are required if the chatbot also pro-

vides the response in the form of an audio file, where the response is spoken in a

human-like voice. The set of libraries or services used for one are usually different

from those used for the other since they involve a different set of challenges.

For the Speech-to-Text systems, the major hurdle is the inherent variations in

speech signals, when produced by different human beings [57]. The variability has

given rise two approaches for building these models - customised models for indi-

vidual speakers and generic models that attempt to cover a wide range of speeches

[58]. In either case, handling variations for the same words for different regions (e.g.



2.1 Architecture of the Chatbot 19

British pronunciation vs American pronunciation of the same word) is a challenge.

Similarly, there are specific issues associated with the Text-to-Speech systems as well

[59]. For example, a common problem includes managing prosody [60], especially in

tone languages like Mandarin [61].

2.1.2 Intent Classifier

In order to process a particular query, the chatbot must first “understand” the

type of query. For example, for an e-commerce chatbot, the query could be about

buying a product, returning a product or feedback for the purchase process. The

background processing of the query will be different for different types, such as

initiating a purchase or recording a response in the feedback database. This step

is known as Intent Classification, where each query that the chatbot receives must

be classified under one of the pre-defined categories. In general, this process is not

definitive, i.e. usually any algorithm that classifies a piece of text into a category,

cannot say so with a probability of 1. The common approach is to consider Intent

which has the highest “confidence score” - a number between 0 and 1 - representing

the confidence of the algorithm that the text is associated with the Intent.

Most of the modern-day efforts at Intent Classification are based on deep learning

techniques (e.g. as shown in [62], [63] and [64]). Usually, chatbot-building platforms

provide Intent Classifiers as “blackboxed” components, i.e. they do not reveal the

steps or algorithms behind the stage which do this job.

2.1.3 Parameter Extractor

Parameter extraction, also known as Slot filling, is a kind of Named entity recogni-

tion [65]. In the process, a chatbot attempts to extract any real-world data, which

is required for processing the user’s query. In an e-commerce setting, an example of

a Parameter is the name of the product that the user wishes to buy. The Param-

eter Extractor, along with the Intent Classifier jointly form the Natural Language

Understanding (NLU) element of a chatbot. NLU is the subset of NLP, which at-

tempts to associate a piece of text with its meaning. Parameters, when associated

with a particular Intent, are known as Slots (we discuss this in detail in Chapter 4).

For every Intent, some Slots are marked as necessary, i.e. a query belonging to the



20 Chatbot and its Environment

Intent cannot be processed without the Parameter Extractor being able to extract

a value for them. Other Slots are optional, i.e. there is a best-effort attempt by the

Parameter Extractor to extract their values if the query provides the same.

Similar to Intent Classification, deep learning techniques are also popular among

researchers for Parameter Extraction (e.g. as shown in [66], [67] and [68]). It is also

not uncommon to find works which perform both tasks simultaneously (e.g. [69],

[70] and [71]). Most chatbot-building platforms provide a common, “blackboxed”

component to provide both Intent Classification and Parameter Extraction.

2.1.4 Response Generator

In order to produce a response for the user, the chatbot has to perform some pro-

cessing. This processing may involve simple tasks - such as greeting the user with a

pleasantry; or, it may involve complex background processing ranging from database

look-ups to executing complex business functions. In any case, a chatbot is expected

to respond to a user’s query, informing her of the performed tasks. The Response

Generator element of a chatbot is tasked with producing a text response for the

last received query. The Response Generator is aware of how a particular query is

to be fulfilled. The fulfilment represents the associated background process for a

particular query (we discuss this in Section 2.2.1). The response for a particular

query can be classified either Static or Dynamic response.

A Static response is a fixed response for a particular class of queries. An example

of such a response is a short description of an e-commerce firm’s refund policy for

queries like Can I get a refund for my product? Static responses are often tied

to queries where the user needs some information which seldom changes. Another

example of a Static response is a Prompt. A Prompt is a pre-defined question, which

is sent as a response to the user if the Parameter Extractor has not provided a value

for a necessary Slot. An example of a Prompt is a response - Can you help me

with the Order Number? It is possible that for a particular scenario, the chatbot

is configured with a list of Static responses, and the chatbot picks a different response

from the list every time to appear slightly more humanly (e.g. the greeting phrase

could be anyone of Hello, Hi and Hey in a round-robin fashion).

Dynamic responses require stitching a different response every time, based on



2.1 Architecture of the Chatbot 21

some “variables”. These variables could either be extracted from Parameter values

or could be provided as a result of one or more Events. Events can be considered as

triggers, which initiate a processing pipeline. Events are often mapped to particular

Intents, meaning that they are executed when the chatbot receives a query which

has been classified with the respective Intent. Usually, Events represent one or more

business processes, for which, the chatbot works like an initiator. The triggering

of an Event involves invoking one or more functions, either within the realm of the

chatbot or outside its scope. At the end of this processing, the Response Generator

receives some inputs (e.g. a JSON object from an external API). The Response

Generator then uses this information to construct a response. For instance, an e-

commerce chatbot may craft a response from the template:

Kudos !! Your $product-name has been ordered,

and it’ll reach you by $expected-delivery-date

by replacing the placeholders with an extracted Parameter (the name of the product)

and a value received after executing the business function for ordering products (the

expected delivery date for the newly created order).

2.1.5 Flow Manager

A user query can have a varying amount of information. For example, the query

could be “complete” with respect to a business request, or the chatbot may need

more data to process the request. As an example, consider the query Please order

a Samsung Galaxy Note for me, and ship it to my home. The query is com-

plete with respect to the business process of ordering a product. Assuming that

the business function for ordering products only requires a product name and an

address, the above query can be processed straight away. The name of the product

can be extracted from the query itself, and the pre-stored home address of the user

can either be extracted via another business function or provided by the user in

previous conversations. In the latter case, the value may be picked from the chatbot

Context Variables or just Contexts in short. Contexts are a set of variables, usually

key-value pairs, that the chatbot maintains to store relevant information associated

with the current conversation session. They can be handy in improving the overall

user experience, by storing any piece of information temporarily, meaning that the



22 Chatbot and its Environment

user does not have to enter it again.

The Flow Manager manages the discourse of the current conversation. An ex-

ample of how the discourse could be different, consider the query - I want to buy

a phone - with respect to the same business process discussed above. Clearly, this

query cannot be processed straight away. The user has neither picked a particular

product, nor has she mentioned an address where the product should be sent. In

such cases, the Parameter Extractor cannot extract the required Parameters from

the query. The common path that most chatbots take at such instances can be

summarised as follows:

• Store the current state of the conversation (e.g. the Contexts) as well as

the intention of the user (e.g. the output of the Intent Classifier) in some

temporary storage.

• Make a list of the Parameters that the user query does not provide (or the

Parameter Extractor failed to extract). If any of the associated Slots are

marked as necessary, issue Prompt responses to the user to seek values for

these Slots.

• When the values associated with all the required Slots are available, restore

the state of the conversation, and proceed towards fulfilling the query, as if

the initial query was “complete”.

This is not the only case when the Flow Manager has to plan a detour. A

chatbot may have to deal with Digressions. A Digression is a scenario when the

user temporarily changes her intentions and then come back to the previous topic

of conversation (we discuss this in detail in Chapter 3). For example, assume that

the chatbot issued a Prompt to the user - Can you tell me the name of the

product you wish to buy? - for extracting the Slot value associated with the

product name. Instead of providing the name of the product, the user, it is possible

that the user replies with a different query, such as What phones do you sell?.

This is known as a Digression. The user may be focused on achieving a goal,

i.e. buying a phone, but she needs some information before making that decision.

Handling these scenarios is a challenging task. Nevertheless, it is under the ambit

of the Flow Manager to manage these complexities.



2.2 Architecture of the Containing System 23

Containing
System

Fulfilments Actions System
Interface Chatbot Other

Elements

- - -

Figure 2.2: The Logical View of the chatbot’s Containing system

2.2 Architecture of the Containing System

We now briefly discuss the elements of the Containing system that are relevant to

the chatbot development process. Figure 2.2 provides an overview of the Containing

system. The Containing system can be extremely complex. We only discuss the

elements that are relevant for the chatbot development.

2.2.1 Fulfilments and Actions

Although not a part of the chatbot itself, Fulfilments and Actions are closely related

to the working of the chatbot. Fulfilments are the processing endpoints into the

business domain that a chatbot invokes as a part of processing a query. There are

two ways to connect a chatbot with Fulfilments. The chatbot may be configured

with a single Fulfilment endpoint, e.g. a URL. The chatbot invokes this URL with

all the relevant information, such as Contexts, name of the detected Intent, name

of any triggered Events and parsed values of Slots. The exposed endpoint is tasked

with invoking relevant business functions based on the passed values. The second

option is to expose multiple Fulfilment endpoints to the chatbot, associating these

endpoints to specific Intents or Events. In this case, the chatbot is responsible for

invoking the expected business function based on the triggered Event.

Actions represent the specific business functions that are invoked during the

execution of a Fulfilment. There may not be an explicit differentiation between

Fulfilments and Actions. Based on how the Containing system is designed, they

may be same or different. The idea is that Actions are specific to the business

domain. They may be invoked through other invocation paths as well (e.g. through

a website or a command-line interface). Fulfilments are the facades which may be



24 Chatbot and its Environment

created to hide the details of Actions from the chatbot. This may be necessary if

the chatbot is built using a platform, and it is crucial to hide the internal business

processes from the chatbot (which is developed on a different domain).

2.2.2 System Interface

Any system that interacts with users has one or more user-facing interfaces. Com-

mon examples of interfaces are Web Portals and Android Apps. Interaction channels

through popular social media pages and handles on messaging platforms are also be-

coming increasingly common. Chatbots are often integrated with a system’s existing

interfaces to provide a smoother experience to the users. For example, the Lufthansa

Airlines Chatbot [2] is deployed on the Messenger platform [72]. It is, therefore, pos-

sible that a chatbot has to process queries from different origins as well as different

formats (voice or text) and send responses in the same fashion. Chatbots always

provide a Text Endpoint for connection, but based on the Containing system’s

requirement, it may also need to expose a Voice Endpoint. Some platforms also

allow a mixed-input endpoint, which can accept both types of inputs.

The interfaces of a system over which the chatbot is to be integrated can be a

strong driving force for selection of a particular platform for building the chatbot.

This is why most of the platforms provide the facility of seamless integration of the

built chatbot over popular messaging platforms such as Messenger[72], Slack [73]

and Telegram [74]. However, many businesses wish to integrate the built chatbot

with their mobile apps, or as a chat widget [75] on their website. In such cases, the

chatbot must support a generic communication mechanism (e.g. through a REST

API [76]) to cater to all required interfaces of the system.

2.3 Reference Architecture for the Application

We now discuss the final contribution of this chapter. We present a Reference

Architecture for an end-to-end application that has some form of conversational ca-

pability. A Reference Architecture is different from a Concrete Architecture, which

represents the schematics of an actual system. On the contrary, a Reference Archi-

tecture works like a design guideline for a class of applications which share some



2.3 Reference Architecture for the Application 25

System
Interface Conversational Elements

Conversational
Flow

Management

Intent
Classification

Parameter
Extraction

Voice Utilities

Response
Generation

Fulfilments

Actions

Rest of the System

Web
Portal

Mobile
Apps

Messaging
Apps

APIs

Social
Media

Figure 2.3: A Reference Model for the Containing system

common concerns. In our case, the common concern is to add a conversational in-

terface to an existing or novel project, having other elements such as databases and

modules implementing specific business functions. Another objective for studying

and proposing Reference Architectures is to provide a set of common terminology

and a shared vision to various stakeholders of the system [77].

Often, a preceding step towards coming up with a Reference Architecture is to

start with a Reference Model. While a Reference Model provides an overview of

the functionality that the system is expected to achieve, a Reference Architecture,

maps these functionalities to system elements [78]. A fair explanation about the

functionality of the chatbot, as well as its containing system has been discussed in

Section 2.1 and Section 2.2. An amalgamation of the discussions in these two section



26 Chatbot and its Environment

Conversational Subsystem

Other Components*

Fulfilments

Voice Utils Chatbot Core

Speech-to-Text

Text-to-Speech

Text
Endpoint

Voice
Endpoint Intent

Classifier†

Fulfilment for Event1

Fulfilment for Event2

Fulfilment for Eventn
External Actions

Actioni

Actionj

System
Interface

User

Messaging 
Platform

Integrations

Messenger

Slack

Telegram

Custom
Integrations

Web Portal

Android App

iOS App

* - Only relevant components shown † - Usually a "blackbox" 

Parameter
Extractor†

Flow
Manager

Intents

Parameters

Response
Generator

ContextsEvents

Figure 2.4: Proposed Reference Architecture for the Containing system

can be summarised using the Reference Model shown in Figure 2.3. The Reference

Model shows the elements of the chatbots as well as the Containing system together

in one frame, to provide the bird’s eye view of the system. With this in sight, we

can now move towards the proposed Reference Architecture which maps it to system

elements.

Figure 2.4 shows the proposed Reference Architecture. We have discussed the

elements of the chatbots separately in Section 2.1. It must be noted that we use

the term Conversational Subsystem in this figure to refer to the elements of the

chatbot. It is because when a chatbot is integrated with a system, we view it as a

subsystem of the larger environment. This Reference Architecture is designed with



2.3 Reference Architecture for the Application 27

an assumption - the chatbot is to be built using a platform, and not from scratch

(this is why the Intent Classifier and Parameter Extractor elements are shown as

“blackboxes”). The platforms that we considered here fall into a specific category

that we call the Conversation-as-a-Service offerings. We will discuss this in detail

in Section 3.2. To explain the Reference Architecture, we show some Concrete

Architectures derived from it.

Consider the case of an Airline chatbot. It allows users to perform basic business

operations, such as enquiring about a flight, booking a flight or providing feedback

for their last journey. Let us assume that the chatbot must be integrated with two

interfaces which are part of the Airlines’ IT operations - their Web Portal and their

Android App. There are three candidate platforms that the company is considering

to aid the chatbot development - Google Dialogflow [27], IBM Watson Assistant [21]

and Amazon Lex [28]. We now present three Concrete Architectures of the Airlines’

operations environment, assuming that one of these platforms was used for building

the chatbot element. These architectures are derived out the Reference Architecture

shown in Figure 2.4. The three possible Concrete Architectures are shown in Figures

2.5, 2.6 and 2.7. These architectures differ from each other in multiple ways. We

now provide a short description of these Concrete Architectures, highlighting major

differences between them.

2.3.1 Concrete Architecture using Dialogflow

Figure 2.5 shows a possible Concrete Architecture of the system when Dialogflow is

used for building the chatbot. Dialogflow provides a single, mixed-input endpoint to

communicate with the chatbot, using the detectIntent method. A query from the

user, either in text or audio format, is sent to this REST endpoint, with appropri-

ate credentials (for authentication and authorisation). The Dialogflow Environment

hosts the different elements of the chatbot, including the Intent Classifier and Pa-

rameter Extractor, which we collectively show as part of the Dialogflow Engine.

Similar to other platforms, the details about the implementation of these elements is

“blackboxed” from the developers. Dialogflow allows configuring a single Fulfilment

webhook to connect to the external business operations, in this case, business func-

tions like book or recordFeedback. It forwards all the required information, such



28 Chatbot and its Environment

Other Components*

Background
Processes

Fulfilments Endpoint

if(event	==	book)	{
		book(params)
		if(bookingSuccessful())
				Return	"Booking	Confirmed"
		else
				Return	"Please	try	later	!"
}	else	if(event	==	enquiry)	{
		<Return	Details>
}	else	if(event	==	feedback)	{
		recordFeedback(params)
		if(params[type]	==	-1)
				Return	"We're	sorry	:("
		else	if(params[type]	==	1)
				Return	"Yay	!!	:)"
		else
				Return	"Thanks	for	your	time"
}
														.	.	.

Dialogflow Environment

/detectIntent
method

Application
Interface

Web Portal

Android App

* - Only relevant components shown † - A "blackbox" 

Voice or Text
Input

Speech-to-Text†

Text-to-Speech#

# - Provided implicitly via WaveNet 

Chatbot Core
Intents

Contexts

Dialogflow Engine†

Entities Events

Fulfilment
Webhook

book()

recordFeedback()
Direct

Invocations

Figure 2.5: Example Concrete Architecture for a Containing system when Dialogflow
is used for building the Conversational subsystem



2.3 Reference Architecture for the Application 29

as the name of the detected Intent and extracted Parameter values to this webhook

through a POST HTTP call, and expects a text response in return in a particular

format. The response is then relayed back to the caller of the detectIntent method.

The Fulfilment webhook decides what actions are to be taken for a particular user

request. Here the actions are the business functions like book or recordFeedback,

which are not exposed to Dialogflow.

2.3.2 Concrete Architecture using Watson Assistant

Figure 2.6 shows a possible Concrete Architecture of the system when Watson Assis-

tant is used for building the chatbot. Chatbots built using Watson Assistant cannot

accept audio input files. Watson Assistant provides a single endpoint using the

message method, which accepts only text inputs, meaning that the Voice Utils (as

discussed in Section 2.1.1) are not provided as a part of the chatbot. However, IBM

provides two independent services, called IBM Speech to Text [79] and IBM Text

to Speech [80] which provide methods called speech-to-text and text-to-speech

respectively to fill this void. Thus, if the requirements involve supporting a voice-

based interaction, there need to be one or two additional API calls. Watson Assistant

provides a mechanism to invoke an IBM Cloud Function [81] as a Fulfilment for any

Intent. Each Intent can invoke a different Cloud Function. They recommend writing

the business logic for every operation in Cloud Functions, or, make HTTP requests

to the business operations’ URLs from these functions. This Concrete Architecture

is based on the platform’s state before August, 2019. Prior to this, it was not possible

for a chatbot to directly invoke an external endpoint. Instead, external endpoints

were only accessible to the Cloud Functions, and any relevant business operations

invocations were supposed to be made via a Cloud Function only. In any case, the

architecture shown in Figure 2.6 reflects a valid architecture. As shown, such an

architecture can reveal the details of the business operations to the platform. It is

possible add some proxy Fulfilment code between the business operations and IBM

cloud functions, similar to the case with Dialogflow. However, it will add another

level of redirection (chatbot to Cloud Function, Cloud Function to the proxy Fulfil-

ment code and then the relevant business operation), meaning more delay between

the arrival of a query and its response. The August 2019 releases provided the



30 Chatbot and its Environment

Fulfilment
Cloud Functions

Watson Assistant
Environment

/message
method

Application
Interface

Web Portal

Android App

* - Only relevant components shown † - A "blackbox" 

Text Input
only

Contexts

Assistant Engine†

Dialog Tree

feedback_function

cURL(/recordFeedback,	params)
if(params[type]	==	-1)
		Return	"We're	sorry	:("
else	if(params[type]	==	1)
		Return	"Yay	!!	:)"
else
		Return	"Thanks	for	your	time"

enquiry_function
<Return	Details>

book_function

cURL(/book,	params)
if(bookingSuccessful())
		Return	"Booking	Confirmed"
else
		Return	"Please	try	later	!"

Intents

Functions

Entities

Watson
Speech to Text

Watson
Text to Speech

Other Components*

Background
Processes

/book

/recordFeedback

/speech-to-text
method

Voice Input,
Text Output

/text-to-speech
method

Text Input,
Voice Output

Direct
Invocations

Figure 2.6: Example Concrete Architecture for a Containing system when Watson
Assistant is used for building the Conversational subsystem



2.4 Related Work and Further Reading 31

option of configuring a single Fulfilment webhook, similar to Dialogflow, essentially

mitigating this drawback of the platform.

2.3.3 Concrete Architecture using Lex

Figure 2.7 shows a possible Concrete Architecture of the system when Lex is used

for building the chatbot. Lex provides two different endpoints for interacting with

the chatbot. The postText method, as the name suggests, is a text-only endpoint.

The postContent method, is a mixed-input endpoint, which can take either text

or audio input. The postContent method depends upon the HTTP headers to

differentiate between the input types. Fulfilments in Lex can only be provided with

the help of AWS Lambda Functions [82]. Lex does provide an additional feature -

possibility of configuring a distinct Lambda Function for the sake of validation of

extracted Parameters. For simple use cases, this can also be done by other means;

hence we only focus on the Fulfilment Lambda Function. Lex expects that any

business operations required for the chatbot are either defined in terms of Lambda

Functions or be invoked through the same, as shown in Figure 2.7. Each Intent

can invoke a different Lambda function. Lambda function can then invoke one

or more business operations. As of writing this thesis, Lex does not provide the

option of configuring an external webhook to invoke business operations. Thus, this

architecture, similar to the architecture shown in Figure 2.6, reveals the details of

the business operations to the chatbot platform. Similar to the discussion above,

adding some proxy Fulfilment code can be a solution, albeit with time penalties.

2.4 Related Work and Further Reading

Reference Architectures have been suggested for many classes of applications (e.g.

[83], [84], [85] and [86]). Attempts to elaborate on their benefits and demerits have

also been made [87]. They have also been contrasted with Product Line Architec-

tures [88]. There are articles on the Internet as well which cover general design

guidelines about chatbots (e.g. [89], [90] and [91]). There are some surveys too,

which compare different chatbot platforms (such as [92] and [93]). However, chat-

bots and the platforms which provide support for building them are still evolving.



32 Chatbot and its Environment

Fulfilment λ Function(s)

Lex Environment

/postContent
method

Application
Interface

Web Portal

Android App

* - Only relevant components shown † - A "blackbox" 

Voice or Text
Input

Speech-to-Text†

Text-to-Speech#

# - Provided implicitly by Amazon Polly 

Chatbot Core
Intents

Lex Engine†

Entities

Direct
Invocations

/postText
method

Text Input only

Session
Attributes

Validation
Functions^

λ
AWS

Fulfilment
Functions

λ
AWS

Other Components*

book()

recordFeedback()

^ - Not used in this example architecture

bookFulfilment

recordFeedbackFulfilment

Figure 2.7: Example Concrete Architecture for a Containing system when Lex is
used for building the Conversational subsystem



2.4 Related Work and Further Reading 33

This means that many articles and blogs may become outdated fairly quickly. It

is, therefore, important to read the current documentation and release notes on the

platforms to know their current capabilities.

There are speech recognition services such as Google Cloud Speech [94], Sonix

[95], Amazon Transcribe [96], Go Transcribe [97] and IBM Watson Speech to Text

[79]. There are some open-source intiatives as well such as CMUSphinx [98], Kaldi

[99] and Mozilla DeepSpeech [100]. Some services which can be used for generating

speech are Google Text-to-Speech [101], Azure Text to Speech [102], Amazon Polly

[103] and IBM Watson Text to Speech [80]. Open source alternatives include Mozilla

TTS [104], CMU Flite [105] and eSpeakNG [106].

A step-by-step process of how an Intent Classifier can be made from scratch

using deep learning techniques is shown in [107]. Another article which discusses

the Intent Classification process in RASA is [108]. This too can be useful if the

developers wish to implement the chatbot from scratch.

Building a Response Generator from scratch would mainly require three ele-

ments. First, an underlying storage mechanism, such as XML or JSON files to keep

a map of Events, mapped to their respective Intents. Second, building or employing

a Template Engine [109]. A list of some open-source Template Engines can be found

at [110]. Third, there needs to be a mechanism in place to invoke external business

logic, for example, using cURL [111].

Building a Flow Manager is a challenging problem, mostly because it has to be

done on a per use case basis. Even the chatbot-building platforms provide limited

support for Digressions. IBM Watson Assistant [21] uses a Dialog Tree to act like

a Flow Manager. On platforms like TARS [112] or ManyChat [113], which provide

a visual editor, the Flow Manager is the tree-like decision structure that the user

defines. Some hints about the custom implementation of a Flow Manager can be

extracted from the discussion in [114].

A good starting point to get a general overview of the chatbot-building process

can be found in [115]. There are a number of articles like [116], [117] and [118] which

discuss the building of simple chatbots using NLTK [119]. Articles such as [120] and

[121] as well as [122] and [123] show how a chatbot can be composed with the help

of RASA.



34 Chatbot and its Environment

2.5 Summary

In this chapter, we started the discussions related to architecting chatbots as well

as the Containing systems that house them. We started by looking at the major

elements that a typical chatbot comprises. These elements include:

• A set of utilities called the Voice Utils, which convert speech to text and vice

versa.

• An Intent Classifier element, which maps a given user query to one of the

pre-defined types.

• A Parameter Extractor element, which extracts instances of useful information

from the conversations with the user.

• A Response Generator element that invokes a processing pipeline, and relays

a response for every user query.

• A Flow Manager element, responsible for the discourse management during a

conversation session with the user.

We then discussed relevant elements of the Containing system’s architecture.

We discussed how Fulfilments are the connections that a chatbot uses to off-load

the processing of queries to external business logic, and Actions are specific business

operations which are part of the overall environment. We discussed how the system’s

interface could be made up of channels on popular communication mediums or,

through custom websites and apps. The built chatbot, thus, may be required to

have the ability to process inputs from different sources and different input formats.

We then presented a Reference Architecture for building an end-to-end appli-

cation containing a conversational interface. We showed three possible Concrete

Architectures, derived from the presented Reference Architecture, for a simple set

of use cases. These architectures were drawn, keeping in mind that a platform was

used to build the chatbot. We showed how using three different platforms can yield

three different Concrete Architectures, which differ from each other significantly.



Chapter 3

Chatbot-building Platforms

In Chapter 2, we initiated the discussion on building chatbots. We discussed the

architectural building blocks of a chatbot, as well as its Containing system. In

this thesis, the focus is on building the chatbot using a platform. Therefore, in

this chapter, we further our discussion of the process by attempting to answer the

following two questions:

• What are the different types of chatbot-building platforms?

• What are the important features that a chatbot-building platform offers to

the developers?

• How can we evaluate a set of candidate platforms for a given chatbot project?

Even though we present a perspective which is closer to a developer, throughout

this chapter, we assume that the design decisions are either taken by a Software

Architect, or taken with the Software Architect in the loop. It is because the choice

to pick a platform is a design decision, which is usually made by the Software

Architect.

This chapter is organised as follows; Section 3.1 provides a brief discussion on

reasons which may force developers to avoid using chatbot-building platforms. This

discussion is included for the sake of completeness. We otherwise focus on cases

where a platform is used in the development process. Section 3.2 discusses the

different types of chatbot-building platforms. Section 3.3 provides a deeper insight

into the dashboards of chatbot-building platforms. Section 3.4 present a list of



36 Chatbot-building Platforms

desirable features that a chatbot-building platform should ideally have. Section 3.5

presents the details of the framework that can be applied to evaluate a candidate

chatbot-building platform with respect to a particular set of use cases. In Section

3.6, we present some Case Studies which can provide valuable hints towards the

process of choosing a platform for use. Section 3.7 presents some related works

which can be pursued for further reading. Finally, we summarise the chapter in

Section 3.8.

3.1 Reasons for Custom Development

Although in this thesis, we concentrate on building chatbots with the help of a plat-

form, we briefly discuss the reasons for which custom development may be better.

The developer need not build the chatbot from scratch. Instead, custom devel-

opment may be done at different levels, to varying extents. There are two major

reasons which can push the developer towards more custom development:

• Privacy Concerns:

Platforms require the developers to provide some training data to build the

chatbot. The most vital data that a platform needs is a set of possible user

utterances, i.e. example queries that a chatbot may receive once it is deployed

(we discuss this in detail in Chapter 4). The best place to get this data would

be from the transcripts of conversations between users and the Technical Sup-

port Team. However, the company may be bound to honour certain Privacy

commitments, or legal frameworks (e.g. GDPR [124]). This prohibition may

render the data useless unless it is anonymised or a synthetic dataset is created,

which closely resembles the variations of the original data.

When a platform is used for building a chatbot, it becomes essential to find

out details about the data they need, the data they store and the ownership

of the data while it resides on their servers. Other details, such as the security

measures they employ to avoid accidental leakage of data or thwart attacks,

may also be crucial. For some domains, such as Healthcare, Privacy may

have even more importance in the architecture of the chatbot [125]. To the

best of our knowledge, there are no articles or work which compare Privacy



3.1 Reasons for Custom Development 37

Policies of chatbot-building platforms. It may be because Privacy Policies are

often drafted in legal terms, which may not be easy for everyone to read and

understand. Some platforms do provide a simplified version of their Privacy

Policy, but in general, there are no solutions. Appendix A contains links to

Privacy Policy resources for selected platforms.

In addition to training data, another possible Privacy problem may arise if the

user inadvertently reveals any personal information while conversing with the

chatbot. Most of the platforms maintain logs of conversations of the chatbot.

It means that the personal information of the user has entered a domain that

she did not intend to (as she assumed that the chatbot operates in the realm of

the company). Handling such instances require precise NLP models to detect

such information at the runtime, and either replace the same with synthetic

data or delete the utterance completely. Achieving this level of customisation

over a platform is usually not easy. It is another strong reason to consider

building the chatbot from scratch, in-house.

• Flexibility Issues:

The chatbot-building platforms provide features to cover common use cases.

Even though some platforms allow more flexibility over others to the develop-

ers, there can be some use cases which cannot be implemented on any candi-

date platform. An example of such a scenario is dealing with queries that can

be associated with more than one Intents. It is extremely difficult to build

chatbots which can handle queries like:

I would like to tell you that your service is horrible,

please refund my money immediately !!

The above query can be associated with two Intents - the Intent of providing

feedback as well as the Intent of returning a product. It is not uncommon to

receive such complex queries from users. If the chatbot is designed in a way

that it can only process simpler queries, i.e. those which can be associated

with at most one Intent, then it is not feasible to handle the query shown

above. There can be other scenarios too, specific to a particular use case,

which cannot be mapped to the definition pattern that the chatbot provides.



38 Chatbot-building Platforms

In addition to these issues, there may be certain constraints which can increase

the developer’s custom development efforts. Some of these constraints for which

developers may not find any suitable candidate platform are listed as follows:

• Supported Languages:

Although English seems to be supported by almost all platforms, a chatbot

may have to cater to people who may not be able to converse in English. The

major issue with supporting multiple languages is that the NLP tasks may not

be performed in the same fashion for each one of them. It means that for every

supported language, the platforms may have to manage a different language

model [126]. Although some methods have been studied for building “general

language models” (e.g. [127], even large-scale deep learning efforts like GPT-3

find it hard to deal with issues pertaining to language modelling [128]. It is not

straightforward to find chatbot-building platforms which support languages

other than English. There are some platform comparison articles which cover

the supported languages attribute as well (e.g. [129] and [22]), but usually it

is not discussed in blogs and articles.

• Pricing:

Probably the most stringent constraint on any software project is Cost. The

advent of cloud computing allowed businesses to pick a pay-as-you-go pric-

ing model. It allows businesses to try out solutions, often free for a limited

period, before making a heavy investment. Whether these prices are within

the project’s budget or not, differs for every case, and a detailed analysis is

required to see if any candidate platform fits the requirements. Since pricing

information is dynamic, the best places to look for it are recent articles on

the Internet such as [130] and [131]. There are some websites and blogs which

compare chatbot-building platforms with each other regularly, such as [132],

[133] and [134], which also provide updated information about pricing models

of popular platforms.

• Region of Deployment:

Some chatbots may have a hard constraint on their response time, i.e. there

may be a hard limit on the maximum amount of time the chatbot can take



3.2 Types of Chatbot-building Platforms 39

Natural Language
Processing

Intent Classification and
Parameter Extraction

Conversational Flow
Management

User Interface Elements

Development
from scratch

Natural Language
Processing

Intent Classification and
Parameter Extraction

Conversational Flow
Management

User Interface Elements

NLP-as-a-Service

Natural Language
Processing

Intent Classification and
Parameter Extraction

Conversational Flow
Management

User Interface Elements

Natural Language
Processing

Intent Classification and
Parameter Extraction

Conversational Flow
Management

User Interface Elements

Conversation-as-
a-Service

ChatWidget-
as-a-Service

Managed by
Developer

Managed by
Platform

Cloud	Natural
Language,	Comprehend,
Watson	Natural
Language
Understanding,	LUIS

Dialogflow,	Lex,
Watson	Assistant,
SnatchBot

Tars,	Chatfuel,
ManyChat,	
Collect.chat

Examples of Platforms

Figure 3.1: Solution stacks offered by different Chatbot-building Platforms
along with some examples

to respond to a user query. In such cases, there may be a strong need to be

able to select the geographical region where the platform deploys the chatbot.

Some chatbot-building platforms (such as Watson Assistant [21] and Lex [28])

allow developers to choose a region where the built chatbot will reside. Other

platforms do not provide this liberty, and the actual location of the chatbot

cannot be custom picked by developers.

As mentioned earlier, we concentrate on platform-aided development in this the-

sis. This discussion was aimed at covering certain cases where significant custom

development may be required (in addition to, or without the use of a platform).

3.2 Types of Chatbot-building Platforms

We begin the discussion about chatbot-building platforms by examining common

offering stacks offered by commercial platforms. It allows us to differentiate them



40 Chatbot-building Platforms

with custom development, as well as with each other. Figure 3.1 shows the categories

in which these offerings can be classified, along with some examples for each type.

The leftmost stack is not a category, but represents a complete custom development

scenario. The other stacks compare the responsibilities of the developer, in case a

platform from that category is used to aid the development. The NLP tasks are

the foundation for any chatbot and are thus placed at the bottom of the stack.

The User Interface of the chatbot (e.g. a chat widget), placed at the top of this

maturity stack, interacts with the user, hiding all the details of implementation.

The two intermediate levels are chatbot-specific tasks. We now describe these three

categories in brief.

3.2.1 NLP-as-a-Service Platforms

The platforms which provide NLP-as-a-Service (NLPaaS) aim to a wider audience -

not necessarily those who are building chatbots. Chatbot developers may use these

platforms to compose functions which perform tasks that are specific for a chatbot.

For example, these platforms provide basic features such as Entity Extraction and

Text Categorisation, which can be used to build the Parameter Extractor and the

Intent Classifier elements of a chatbot. Usually, these NLP services have ready-

to-use NLP models for multiple Natural Languages. In case these models are not

helpful, some services also allow training custom NLP models. A major issue with

the use of these services could be price. Each service has a different pricing model,

and it may enforce cost constraints over its usage. Some of these services include

Microsoft LUIS [135], Amazon Comprehend [136], Google Cloud Natural Language

[137] and IBM Watson Natural Language Understanding [138].

While the use of these services can allow developers to compose a more flexible

version of the chatbot, they may still not alleviate all issues pertaining to the Privacy

of data. To augment the use of these services, the developers may have to look for

some Privacy-preserving techniques [139], e.g. those related to Data Anonymisation

[140].

In addition to cloud-based services, there are a few options which can qualify

under NLPaaS; however, they are not provided in ready-to-use forms. A more apt

term for these options would be NLP libraries or frameworks. Nevertheless, they



3.2 Types of Chatbot-building Platforms 41

provide similar support to developers, as the NLPaaS platforms. The most popular

open-source framework for building chatbots is Rasa [141]. Rasa is a dedicated open-

source framework, specifically for building, and integrating chatbots with popular

messaging platforms. Other, more general NLP libraries can also be used, albeit

with more coding effort. The examples for such libraries include NLTK [119], spaCy

[142] and Gensim [143]. The use of the TensorFlow [144] to train and use models

is almost omnipresent with all AI activities today, including those involving NLP

tasks.

All the libraries discussed above are in Python. A free framework for performing

chatbot-specific NLP tasks in Java is the BotsCrew Bot Framework [145]. Some

available options to perform core NLP tasks in Java are Apache OpenNLP [146],

Apache UIMA [147] and Stanford NLP [148].

3.2.2 Conversation-as-a-Service Platforms

The Conversation-as-a-Service (CaaS) platforms are those which are dedicated to-

wards chatbot development. Often, the providers of such offerings have their own

dedicated layer of NLP services which power their abilities to build chatbots. There

are two important aspects in which CaaS platforms help the developer. First, they

provide support for matching queries to their Intents and extracting any Parameter

values from user utterances. Second, they allow the developer to control the dis-

course during a conversation with the user to make the overall process seem more

natural. These offerings give ample flexibility to the developers for implementing

their use cases, and at the same time, reduce the effort required to do the same (we

discuss how they do so in Chapter 4). It makes these platforms the ideal class to

study from an architectural point-of-view, since their usage provides scope for some

interesting designing decisions. Thus, in this thesis, we focus largely on chatbot

development over CaaS platforms. From here on, whenever we use the term

“chatbot-building platforms”, we essentially mean “CaaS platforms”, un-

less otherwise specified. Some examples are Google Dialogflow [27], IBM Watson

Assistant [21], Amazon Lex [28] and SnatchBot [149].

CaaS platforms expect the developers to provide some training data, with the

help of which, they build models for performing the NLP tasks such as Intent Classi-



42 Chatbot-building Platforms

Figure 3.2: A view of the ManyChat Visual Editor, clipped from an image at [1]

fication and Parameter Extraction. These platforms provide multiple Integrations,

through which, the built chatbot can be deployed over a wide array of mediums and

communicate with downstream processes. These platforms expect that the develop-

ers define the use cases associated with the chatbot in a particular definition pattern

(we discuss this in detail in Chapter 4). This pattern enforces a restriction on the

capability of the built chatbot. Any use case that cannot be expressed in terms

of this pattern cannot be served by the chatbot built with these platforms. While

this does take away some flexibility from the hands of the developers, they save the

efforts related to training and fine-tuning models for the NLP tasks. For many use

cases, this trade-off is acceptable.

3.2.3 ChatWidget-as-a-Service Platforms

The platforms that we call as the ChatWidget-as-a-Service (CWaaS) platforms are

often also known as “no-code” platforms for building chatbots. Almost all of them

provide a visual, drag-and-drop editor for composing chatbots. It is in contrast to

the CaaS platforms where the developer has to provide textual data with multiple

annotations.

An example of such a visual chart from the ManyChat platform [113] is shown

in Figure 3.2. ManyChat specialises in building chatbots which can be deployed on

Messenger [72]. It does not mean that these platforms do not provide any mech-

anisms to write code. It only indicates that the amount of (and scope for) coding



3.3 Dashboards on Chatbot-building Platforms 43

on these platforms is usually restricted to simple code fragments. If we refer to the

elements of a chatbot discussed in Section 2.1, these platforms usually provide a

Flow Manager, a Response Generator and mechanisms to invoke Fulfilments, with-

out any (or with very simple) Intent Classifier and Parameter Extractor elements.

These platforms usually provide visual tools for creating a flowchart-like structure.

The built chatbot strictly follows this chart, including nodes meant for conditions

where the chatbot receives an input that it cannot handle explicitly. An example

of a Messenger [72] chatbot is the Lufthansa Airlines Chatbot [2], which is shown

in Figure 3.3. These platforms often build chatbots for specific mediums (such as

Messenger) and harness the features of the medium to build the chatbot (such as a

multiple-choice answering interface restricting or suggesting answers to a question

from the chatbot).

CWaaS platforms may not be able to provide the required flexibility that a

developer may wish to have. To overcome this handicap, they often offer pre-built

chatbot templates for common use cases. For more sophisticated scenarios, these

platforms usually provide mechanisms to use Intent Classification and Parameter

Extraction facilities of a CaaS platform such as Dialogflow.

3.3 Dashboards on Chatbot-building Platforms

The dashboard of a chatbot-building platform is the canvas where chatbots are

defined. In this section we contrast the dashboards of the CWaaS platforms with

those on the CaaS platforms.

3.3.1 CWaaS Platforms

CWaaS platforms usually provide a drag-and-drop graphical editor to define the

chatbot’s “flow”. With respect to our discussion related to the elements of a chat-

bot (Section 2.1), this editor roughly corresponds to the Flow Manager (Section

2.1.5). As an example, we presented a snapshot of a flow graph, built on the dash-

board of the Manychat platform [113] in Figure 3.2. We now take the dashboard of

another popular top-tier platform, Chatfuel [150], to provide a general overview of

the dashboards of such platforms.



44 Chatbot-building Platforms

Figure 3.3: A sample interaction with Lufthansa Airlines Chatbot [2] on Messenger

Figure 3.4 shows two screenshots of the Chatfuel dashboard, with descriptions.

Figure 3.4(a) shows the options available on the left pane. These include settings

related to analytics and other chatbot settings on the platforms. Chatbots are

defined through a group of flows. A sample flow is shown in the two screenshots.

Each flow has a starting block. It is where the chatbot enters the flow. From that

point, based on the defined flow, the chatbot can take any of the branches described

in the flow. Branches in the flow can happen because of multiple reasons. It could

be because the user clicked on one of the given buttons (as shown in the example of

Lufthansa Airlines chatbot in Figure 3.3), or, it could be based on the value of some

Context Variables, as shown in Figure 3.4(b). Figure 3.4(b) also shows two Action



3.3 Dashboards on Chatbot-building Platforms 45

(a) The starting (block on the top-left) and consequent blocks of the flow

(b) A block with conditional branching and two nodes to invoke external logic (on the right)

Figure 3.4: Screenshots from the Chatfuel dashboard



46 Chatbot-building Platforms

blocks. On Chatfuel, an Action block can perform some basic processing, such as

setting or unsetting values of some Context Variables or forwarding the request to

an external Fulfilment source.

We summarise the common highlights associated with the dashboards of CWaaS

platforms as below:

• The CWaaS platforms usually provide a drag-and-drop editor to define states

and transitions in the conversation.

• The CWaaS platforms often provide mechanisms to either restrict or suggest

user inputs, by providing buttons which the user can (or must) click to move

forward in the conversation.

• Since buttons are a part of chatbot’s front-end, CWaaS platforms usually

have higher coupling with specific mediums. For example, both Manychat

and Chatfuel are meant to build chatbots for the Messenger platform only.

• Most CWaaS platforms either have limited or no support for NLP tasks. For

that, they usually allow integrations with other platforms for NLP support.

For example, both Manychat and Chatfuel provide mechanisms to connect the

chatbots with Dialogflow [151] [152].

• The CWaaS platforms usually compensate for their lack of NLP support (and

hence support for limited chatbot use cases) by providing other features, such

as better analytics and insights. It is possible because they are tightly coupled

with the mediums, and hence, can get a lot of data related to the users, directly

from the underlying medium.

• The CWaaS platforms, do provide mechanisms to invoke external processing

pipelines through REST API calls [76].

The CWaaS platforms usually pick higher Usability with low Flexibility as their

primary tenets. Although CWaaS platforms are trying to catch-up on the Flexibility

part - such as the newly introduced features for AI on Chatfuel [153] - they are still

limited in their capability. From an architectural perspective, they do not provide

enough decision-making instances in the chatbot-building journey to study.



3.3 Dashboards on Chatbot-building Platforms 47

3.3.2 CaaS Platforms

CaaS platforms require the definition of multiple elements, which the platform com-

bines together to build a working chatbot. The two most common elements that a

developer has to define on a CaaS platform are Intents and Entities. In order to

discuss the dashboards of these platforms, we pick two example platforms - Google

Dialogflow [27] and IBM Watson Assistant [21].

Some screenshots of the Dialogflow platform’s dashboard are shown in Figure 3.5.

As shown in Figure 3.5(a), the dashboard is different as compared to that of Chatfuel.

Instead of a visual editor, the dashboard shows the list of Intents associated with the

chatbot. On the left, there are links to manage the other elements of the chatbot,

such as Entities and Fulfilments. The right side of the dashboard hosts a Test

Console, where queries can be tested for their response. Figure 3.5(b) shows the

definition page of an Intent, whereas Figure 3.5(c) shows the definition page of an

Entity. We will discuss these details in Section 4.2.

Figure 3.6 shows two screenshots of the dashboard of Watson Assistant. They

show an interesting discourse management tool - a Dialog Tree for managing the

flow of Conversations. The Dialog Tree acts like an explicit Flow Manager, where

developers can define fairly complex flow scenarios. Figure 3.6(a) shows the nodes in

the tree. Nodes are evaluated from top to bottom, and parent to child. Each node

can represent some Flow Logic. An example of how the flow logic can be supplied is

shown in Figure 3.6(b). In essence, the developers can define a condition, on which

the node is “triggered” during evaluation. The condition could be the detection

of a particular Intent in the last user input or any other boolean expression based

on Context variables. In the next step, the developer can define some Context

variables to hold any needed Slot values. These variables can then be used to process

a Response. Finally, the developers can use a feature similar to Goto statements

[154], to take the processing to any other node in the tree.

We summarise the common highlights associated with the dashboards of CaaS

platforms as below:

• The CaaS platform dashboards provide features to define Intents and Entities,

often including the ability to tag instances of specific Entities in the user

utterances associated with an Intent.



48 Chatbot-building Platforms

(a) A general overview of the dashboard

(b) Definition page for an Intent

(c) Definition page for an Entity

Figure 3.5: Screenshots from the Dialogflow dashboard



3.3 Dashboards on Chatbot-building Platforms 49

(a) The node structure; the nodes are evaluated from top to bottom

(b) An example of how flow is controlled

Figure 3.6: Screenshots of the Watson Assistant Dialog Tree



50 Chatbot-building Platforms

• While the CaaS platforms do provide easier integrations with a vast number

of solutions, they are usually more generic in nature, i.e. they are not centred

towards specific mediums.

• The CaaS platforms which do not have an explicit Flow Manager, usually have

other features that can help in Flow Management. For example, Dialogflow

offers a feature called Follow-up Intents [155], which in collaboration with the

Input and Output Contexts [156] can provide support for some elementary

Flow Management [157].

• The CaaS platforms, in addition to mechanisms for invoking external process-

ing pipelines, often provide either inline coding support (such as Dialogflow’s

inline Node.js editor [158]) or support on allied coding environments (such as

IBM Cloud Functions [81] on Watson Assistant and AWS Lambda Functions

[82] on Lex).

The CaaS platforms aim to provide more Flexibility to the developers for defining

a variety of use cases. They provide out-of-the-box NLP features, specific to the

process of building chatbots, and allow developers to use them to compose their

chatbots. From an architectural perspective, they present several design choices.

We will discuss one such choice in great detail in Chapter 5, called Intent Sets.

3.4 Desirable Features of a Chatbot-building Plat-

form

We now present a hierarchical list of features that a chatbot-building platform should

ideally expose, in order to cater to a wide range of chatbot projects. Although these

features are fairly close to implementation (and hence, mostly affect the developers),

their knowledge can be helpful for the Software Architect in analysing platforms.

The Software Architect can also involve the developers in the decision-making pro-

cess (we discuss examples of this scenario is Section 3.5). Figure 3.7 shows the

five top-level categories of these features. Each category is either divided into sub-

categories or contain a list of desirable features. As mentioned before, we assume



3.4 Desirable Features of a Chatbot-building Platform 51

Desirable Features in a
Chatbot-building Platform

Features related to 
creation, modification and 

configuration of Intents

Support for management 
of the Conversational Flow

with the user

Features related to 
definition of Entities, and

corresponding Parameters 

Support for Integration of
the chatbot into different

deployment environments

Features related to
specification of Fulfilments

Figure 3.7: Top-level categories of desired platform features

that the platforms in consideration are the CaaS platforms. The features are based

on the discussions in Section 2.1 and Section 2.3.

3.4.1 Features for Intents Management

The features in this category are associated with creation, deletion and modification

of Intents on the platform. Table 3.1 shows these features. We discuss them in brief:

• Create Intents:

The platform should provide mechanisms to create one or more Intents that

the chatbot has to serve. In particular, it should offer the following:

– Provide mechanisms to associate Parameters with the Intent. For exam-

ple, if the developer wishes to define an Intent called order query to

cater to any product ordering queries in an e-commerce environment, she

should be able to associate Parameters like Product Name and Shipping

Address with the Intent to capture this information from the user query.

– Provide mechanisms to associate example user utterances with the Intent.

For example, for the order query Intent, probable examples could be:

Please order a Samsung Galaxy Note to 221B, Baker Street.

– Provide mechanisms to tag locations of Parameter values in user utter-

ances for the Intent. For example, the above example could also be



52 Chatbot-building Platforms

Table 3.1: Intents Management Features

Desired Platform Features for Intents Management

Create Intents

Add Parameters

Add training examples

Tag Parameter occurrences in training examples

Map Parameter occurrences to specific values

Update Intents

Provide new training examples

Edit existing training examples

Remove existing training examples

Delete Intents

Default Intent

Provide default response

Set a minimum confidence threshold to trigger any Intent

Provide counterexamples – to trigger Default Intent explicitly

provided as: Please order a Product Name to Shipping Address .

– Provide mechanisms to map instances of Parameter values, in example

user utterances for the Intent. For example, in the example above, the

developer should be able to tag instances for Product Name and Shipping

Address, like: Please order a Samsung Galaxy Note:Product Name

to 221B, Baker Street:Shipping Address .

Note that the last feature is a “superset” of the feature before, i.e. if the plat-

form allows mapping of Parameter values, it implicitly provides the feature of

tagging the location of the Parameter values as well. However, a platform can

provide flexibility to the user to pick either of the two options - i.e. provide

specific values (such as Samsung Galaxy Note) and map them to the respec-

tive Parameter (such as Product Name), or just provide a placeholder in the

example to show the location of the Parameter. Watson Assistant [21] offers

both the features. Dialogflow [27] offers the latter, but not the former. Lex

[28] offers the former, but not the latter.



3.4 Desirable Features of a Chatbot-building Platform 53

• Update Intents:

The platform should provide mechanisms to update the details associated with

defined Intents for the chatbot. In particular, it should offer the following:

– Provide mechanisms to add additional example user utterances associated

with an Intent.

– Provide mechanisms to modify existing user utterances associated with

an Intent.

– Provide mechanisms to remove one or more existing utterances associated

with an Intent.

• Delete Intents:

The platform should provide mechanisms to delete one or more Intents defined

for the chatbot.

• Default Intent:

Default Intents play an important role in the working of a chatbot. We dis-

cussed the uncertainties associated with the chatbots in Section 1.2. One of the

uncertainties that the chatbot has to handle is the imperfection of the Intent

Classifier element. It is possible that the user utterance cannot be mapped

with high confidence to any of the defines Intents. It could be because the user

asked something that is out of the scope of the chatbot, or that the chatbot

was not trained with a similar user utterance. In any case, platforms should

provide a safety net to catch these instances and invoke a backup plan. A

query is classified under the Default Intent if it cannot be associated with any

defined Intent of the chatbot. A platform should provide the following features

to the developer, to make the best use of the Default Intent:

– Provide mechanisms to configure one or more default responses for the

chatbot. For example, the default response for a chatbot could be:

Sorry, can you rephrase your query?

– Provide mechanisms to configure the minimum confidence threshold for

triggering a non-Default Intent for the chatbot. For example, if this

threshold is set to 0.8, then in case the chatbot cannot associate the



54 Chatbot-building Platforms

Table 3.2: Entities Management Features

Desired Platform Features for Entities Management

Create Parameters

Provide possible values for the Parameter

Provide synonymous occurrences for provided values

Allow the extension of possible values list automatically

Disallow extension of possible values list automatically

Update Parameters

Add more possible values for the parameter

Edit a provided value

Delete synonymous occurrences

Remove existing values for the parameter

Delete Parameters

query with any non-Default Intent with at least a probability of 80%,

then the Default Intent is triggered.

– Provide mechanisms to associate example user utterances with the De-

fault Intent of the chatbot. These examples are essentially counter-

examples for the chatbot, to signify that these set of queries are not

meant to be served by the chatbot. For example, if a chatbot in an

e-commerce environment is not supposed to process returns, then the

following query could be configured as a counter-example: I want to

return the phone I bought from you !!

3.4.2 Features for Entities Management

The features in this category are associated with creation, deletion and modification

of Entities on the platform. Entity is another term used to denote Parameters.

Table 3.2 shows these features. We discuss them in brief:

• Create Parameters:

The platform should provide mechanisms to create one or more Parameters

that the chatbot will encounter in user queries. In particular, it should offer

the following:



3.4 Desirable Features of a Chatbot-building Platform 55

– Provide mechanisms to define possible values of the Parameter. For ex-

ample, possible values for a Parameter called Customer Age could be

defined as: less than 18, 18-35, 36-50 and more than 50.

– Provide mechanisms to define synonyms for any possible value of the

Parameter. For example, for the less than 18 value of the Customer

Age Parameter, the developer could define a synonym called minor.

– Allow the developer to choose that the possible values of the Parameter

can be extended by the platform automatically, if a relevant query con-

taining the same is encountered. For example, if a Parameter called

Fruit Name is defined to have values apples, oranges and grapes, the

developer could configure the platform to add, say pears to the list, if

it encounters a query where the term “pears” was found at a location

usually associated with the Fruit Name, e.g.: I would like to buy 2

Kgs of fresh pears.

– Allow the developer to restrict the possible values of the Parameter to the

explicitly defined values only, even if the platform encounters a likely new

value of the Parameter. For the above example, in such a scenario, the

platform will ignore the value “pears” and behave as if no value has been

specified for the Fruit Name Parameter.

Note that the last two features are “opposites” of each other. For some Pa-

rameters, the developer may wish to have the former feature, while for others,

the developers may want the latter. An example of the former case is, as men-

tioned above, the name of fruits. The developer would like that the platform

keeps on adding new fruit names to the list, since it may be too difficult to

provide the names of all possible fruits explicitly. An example of the latter is

the type of shipping - normal or express. Since the available types of shipping

are limited in number (and can be defined explicitly), the developer would like

to restrict its possible values to the defined set only.

• Update Parameters:

The platform should provide mechanisms to update the details associated with

defined Parameters for the chatbot. In particular, it should offer the following:



56 Chatbot-building Platforms

– Provide mechanisms to add more possible values of a Parameter.

– Provide mechanisms to modify any possible values of a Parameter.

– Provide mechanisms to remove one or more synonyms for any possible

value of a Parameter.

– Provide mechanisms to remove one or more possible values of a Param-

eter.

• Delete Parameters:

The platform should provide mechanisms to delete one or more Parameters

defined for the chatbot.

3.4.3 Features for Defining Fulfilments

The features in this category are associated with the management of Fulfilments.

Table 3.3 shows these features. We discuss them in brief:

• Slot filling:

The platform should provide mechanisms to fill values of necessary Slots as-

sociated with the Intents of the chatbot. As mentioned in Section 2.1.3, a

Slot represents the mapping between an Intent and a Parameter. Values for

necessary Slots are required for processing queries of the respective Intent. In

particular, the platform should offer the following:

– Provide a special type of response to the user, called a prompt, seeking

values for a particular Slot. For example, if the user has not provided

value for a Slot called Shipping Address, the prompt may look like:

I need a Shipping Address to process your order !!

– Show the user a set of fixed options to pick a value for a particular Slot.

For example, for fetching the value for a Slot called Shipping Type, the

platform may provide the user two options - Normal and Express - and

the user is expected to pick anyone out of these two options.

• Static Responses:

The platform should be able to provide a static response for queries associated

with certain Intents. In particular, the platform should offer the following:



3.4 Desirable Features of a Chatbot-building Platform 57

Table 3.3: Fulfilments Management Features

Desired Platform Features for Managing Fulfilments

Slot filling

Provide prompts to receive inputs from the user during conversation, for
filling a required Slot

Show options (one or more buttons for the user to click, out of a limited set)

Provide a static response for some queries

Textual Response

Multimedia Response (Image/Audio/Video etc.)

Provide a dynamically crafted response for some queries

Allow the response to have placeholders for Slot values and Context variables

Allow the response to have placeholders for secondary information, e.g. Intent
classification confidence or computed values

Dynamic response based on variable values (e.g. using conditional operators
or if-else ladders)

Trigger external events

Control Slot values interpretation

Get the supplied value

Get the reference value



58 Chatbot-building Platforms

– Provide mechanisms to configure a fixed textual response for queries as-

sociated with any particular Intent. For example, for an Intent called

greeting, the developer may fix the response as:

Hello !! how are you doing today?

– Provide mechanisms to configure a fixed multimedia response for queries

associated with any particular Intent. It may include a picture, a video,

or any other custom response.

• Dynamic Responses:

The platform should be able to provide a dynamic response for queries as-

sociated with certain Intents. In particular, the platform should offer the

following:

– Provide mechanisms to craft dynamic responses with placeholders pointing

to Slot values or Context variables. For example, for the greeting Intent,

the response could be made dynamic, by using the user’s first name from

the Contexts. This is possible if the platform allows responses like:

Hello $FirstName !! how are you doing today?

– Provide mechanisms to craft dynamic responses with placeholders con-

taining computed values or any other value, not a part of the Contexts.

For example, the platform has mechanisms to build a response having

a placeholder for user’s age, derived from the value of a Slot associated

with user’s Date of Birth.

– Provide mechanisms to craft dynamic responses based on conditions. For

example, for the above scenario, the platform has mechanisms to provide

different responses, based on different age groups.

• Trigger External Events:

The platform should provide mechanisms to trigger any Events, which in turn,

initiate a processing pipeline, external to the chatbot. The most common

means to do so is providing the developers with the option to configure an

external URL. The URL is invoked by the chatbot when a specific Event

occurs, such as the user requesting the creation of a new order. The platforms



3.4 Desirable Features of a Chatbot-building Platform 59

usually put a timeout for the call to complete, so that the chatbot does not

enter an indefinite wait state.

• Parameter Values Interpretation:

The platform should provide options to the developers to choose which value

for a particular Slot should be supplied for downstream processing. For ex-

ample, for a Slot that accepts the name of a sport, the developers may define

a possible value as Football, with the synonym Soccer (they are two names

for the same sport). When a user supplies this value during a conversation,

she may write either of the two terms. Based on how the Fulfilment logic is

written, the developer may want the platform to replace the term Soccer with

Football, before triggering any Events. In this case, Football is the refer-

ence value, whereas Soccer is the supplied value for the Slot. In particular,

the platform should offer the following:

– Provide a mechanism to the developer to configure the chatbot to use the

reference value of a particular Slot value, instead of the supplied value.

– Provide a mechanism to the developer to configure the chatbot to use the

supplied value of a particular Slot value, instead of the reference value.

3.4.4 Features Related to Integrations

The features in this category are associated with the management of Integrations.

As mentioned in Section 3.2.2, Integrations are the means with which the chatbot

interacts with its environment. This category includes features related to integrating

the chatbot with the Application’s user interface, linking it to the Application’s

business backend and accessing it through programmable means such as APIs. Table

3.4 shows these features. We discuss them in brief:

• Invoking public URLs for Fulfilment:

This is the most common means provided by platforms to support the Trigger

External Events feature discussed in Section 3.4.3. It means allowing devel-

opers to configure external URLs to invoke on the triggering of some Event.

Usually, the platforms only support POST calls [159]. This option potentially



60 Chatbot-building Platforms

Table 3.4: Integrations Management Features

Desired Platform Features for Managing Integrations

Send requests to a public URL and expect a response back

Send request to a restricted source (a URL with domain restrictions or a func-
tion that can be invoked internally by the platform) and expect a response back

Interfaces to integrate with existing platforms (e.g. Facebook Messenger, Slack,
Telegram etc.)

API to create, modify, train, use and delete the Chatbot (e.g. REST APIs)

allows integration of the chatbot with any arbitrary system at the back for

processing queries. The only requirement from the backend operation is to

expose a publicly accessible URI.

• Invoking restricted, secure URLs for Fulfilment:

The major issue with invoking a public URL is security. For example, if the

public URL points to a business API of the company, it may require authenti-

cation. Platforms usually allow configuring authentication information as well

along with the URL, such as username and password pairs or API keys and

secrets. Nevertheless, authentication complicates the process flow, and can

even slow it down significantly. Some platforms allow the specification of busi-

ness logic on a restricted, secure location, within the ambit of the platform’s

domain. The common example for such sources are IBM Cloud Function [81]

and AWS Lambda Functions [82]. The advantage of these sources is that they

usually have faster response time, and use implicit authentication mechanisms,

not requiring the developers to worry about passwords or API secrets.

• Integrating with popular communication mediums:

Assisting developers with connecting the chatbot to a popular communication

medium is often touted by the chatbot-building platforms as a significant ad-

vantage over their peers. Some platforms even restrict themselves to building

chatbots that are tailor-made for specific communication mediums like Mes-

senger [72] or Slack [73]. Nevertheless, providing integration support for as

many communication mediums as possible is a critical point of competition

between chatbot-building platforms today.



3.4 Desirable Features of a Chatbot-building Platform 61

Table 3.5: Conversational Flow Management Features

Desired Platform Features for Managing Conversational Flow

Pass contextual information from the currently triggered Intent to any subse-
quently triggered Intents in the conversation flow

Handle follow-ups (e.g. Confirmations such as Yes or No, Next or Previous
etc.)

Handle digressions

Process multiple-Intents queries

• API access:

While most of the platforms provide a dashboard to the developers to create,

train, use and delete the chatbots, it is an added advantage if the same can

be done via programmable means. Some platforms provide an API suite for

these purposes. The most common API access is provided through a set of

REST API endpoints.

3.4.5 Features for Managing Conversational Flow

The features in this category are associated with the discourse management during

an interaction session with the user. In simpler terms, the features in this category

are essential for managing the state of a conversation with the user, and responding

accordingly. Table 3.5 shows these features. We discuss them in brief:

• Storing and Retrieving Contexts during a Conversation:

The platform should provide mechanisms to store and retrieve values of Con-

text variables during the processing of a query. This feature is crucial for pro-

vide the feature of crafting Dynamic Responses, as discussed in Section 3.4.3.

Context variables or Contexts in short, as discussed in Section 2.1.5, provides

a kind of temporary storage for a particular conversational session with the

user. This feature allows information to flow from one query-response cycle to

another. For example, consider the conversational session shown in Figure 3.8.

Here, the chatbot uses the value of the Slots containing the product’s name

and shipping address provided by the user in previous responses, to place an

order and craft a response dynamically containing the details. For this, the



62 Chatbot-building Platforms

U1 User I want to buy a Samsung Galaxy Note

C1 Chatbot Understood, you want to buy one Samsung Galaxy Note.

C2 Chatbot Would you like Normal shipping or Express shipping?

U2 User Normal

C3 Chatbot Understood, Normal shipping it is.

C4 Chatbot Can you provide me the Address for shipping?

U3 User 221B, Baker Street

C5 Chatbot Ok, shall I place the order?

U4 User Please make it Express shipping

C6 Chatbot Alright, I’ve changed the shipping to Express.

C7 Chatbot Ok, shall I place the order?

U5 User Yes

C8 Chatbot Great !! A Samsung Galaxy Note coming to

221B, Baker Street

via Express shipping soon.

Figure 3.8: A sample conversational session between a chatbot and a user

platforms should provide a mechanism to store Slot values as well as any other

information that the chatbot requires, as Context variables.

• Follow-ups in a Conversation:

The platform should provide a mechanism to provide simple follow-up prompts

to the user, such as those asking for some kind of confirmation. Figure 3.8

shows how the chatbot seeks approval from the user, twice, before going ahead

with the placement of the order. Another possible follow-up prompts could

be the user asking to go to the next task in the sequence (such as playing the

next track in a playlist). Platforms usually provide this feature by offering a

set of specific Intents to seek such inputs from the user.

• Digressions:

A digression, as discussed in Section 2.1.5, is a scenario when the user tem-

porarily switches the topic of conversation and returns. An example of digres-

sion can be seen in Figure 3.8. In C5, the chatbot essentially asks a Follow-up

question for confirmation. The user, instead of answering in “Yes” or “No”,



3.5 Hospitality of a Chatbot-building Platform 63

instead talks about changing the shipping speed in U4. The chatbot under-

stands this digression, modifies the shipping type accordingly, and comes back

to the same question in C7. A platform should provide mechanisms to the

developer to handle such scenarios.

• Multiple-Intents queries:

Discussed as a Flexibility issue in Section 3.1, providing mechanisms for han-

dling complex user queries which can be associated with more than one Intent,

is not easy. It is an area where most of the chatbot-building platforms fail. On

some platforms (like Watson Assistant [21]), it may be possible to do so with

some jugglery with the available features (for instance, as discussed in [160]).

However, in general, the support for this feature is still not widely available in

chatbot-building platforms.

3.5 Hospitality of a Chatbot-building Platform

In this section, we discuss the evaluation of a few candidate platforms, against a

given set of use cases. The assumption is that the Software Architect can come

up with a set of Quality goals to achieve. We use an architectural framework,

called the Hospitality framework. The framework is specifically useful for evaluating

the usefulness of one or more platforms. The Software Architect can apply the

framework to pick one platform out of a small set of candidate platforms, by critically

examining the use cases that the chatbot has to serve.

3.5.1 Understanding Hospitality

From a pure Software Architectural perspective, chatbots are just another kind of

software component. They too have inherent Quality issues, similar to any other

component. What differentiates them from the “conventional” software components

is the embedded “uncertainty” involved in their operation as discussed in Section

1.2. The Hospitality framework is a general framework, which can be applied on a set

of platforms, to evaluate their support towards achieving quality in an application.

The term Hospitality has been defined in the context of cloud platforms before

in [161]. The authors defined the term as “the support provided by the underlying



64 Chatbot-building Platforms

cloud platform towards building quality applications”. We generalise this definition

of Hospitality as following:

Hospitality of a platform is defined by the native support of the platform

towards achieving any quality goals. The goal could be realising an architec-

tural tactic or exhibiting a Quality Attribute.

Hospitality is a Quality Attribute (QA) of a platform (not an application). This

attribute can be discussed with respect to specific quality goals. For example, a

platform might be “more hospitable” towards the Interoperability QA, whereas it

may be “less hospitable” towards the Security QA. Any application built or deployed

over the platform, with certain Quality requirements, would require lesser efforts

to achieve its Quality goals if the platform has higher Hospitality for the same.

Hospitality can also be analysed at the level of an Architectural Tactic or Tactic

in short [162]. For example, a platform that provides seamless integration between

modules of an application may be considered more hospitable towards the Split

Module Tactic for the Modifiability QA. In this thesis, we apply the concept of

Hospitality to chatbot-building platforms. In Section 3.4, we discussed desirable

features that a chatbot-building platform should offer. In this section, we show how

the features provided by a platform, can be linked to their support towards achieving

Quality goals associated with the chatbot. While our focus always remains around

the Quality issues with the chatbot, certain issues may also require analysing its

relationship with the Containing system.

We start by tailoring the definition of Hospitality for chatbot-building platforms

as following:

The Hospitality of a chatbot-building platform can be defined as the support

provided by the platform towards building and deploying a chatbot component

with expected Quality.

The overall process of evaluating the Hospitality of a platform is summarised below:

1. The Software Architect analyses the use cases that the chatbot has to serve.

Besides, she may also consider some of the Constraints related to the project.

2. The Software Architect prepares a list of Quality goals that the chatbot has

to achieve, by examining the use cases and Constraints.



3.5 Hospitality of a Chatbot-building Platform 65

3. The Software Architect maps the Quality goals to a set of QAs. These QAs

must be in focus throughout the development, integration and operation of

the chatbot.

4. For each QA, the Software Architect examines the Software Architecture Body

of Knowledge, to find out relevant Architectural Tactics associated with the

QA. The Architect may also come up with new Tactics to suit the scenario.

5. The Software Architect should map each Tactic to a list of desirable features,

that the platform should expose.

6. For each candidate platform, the Software Architect examines the availability

of the desired features.

7. Hospitality can now be calculated for a particular Tactic or a particular QA

by assigning different weights to the features, and calculating an index using

the weighted sum approach. We call these values the Hospitality Index of the

platform towards the specific QA or Tactic.

To remove any confusions, we summarise the three contexts in which we will use the

term “Hospitality” before we move ahead:

• Hospitality is a QA. It is a QA of a “platform”, not the application built on

top of it. Hospitality is always associated with another QA or Tactic. To

put simply, it is the contribution of a platform, through its offered features,

towards achieving a Quality goal.

• Hospitality Index is the metric to measure Hospitality of a particular platform

towards a specific Quality goal. It only makes sense, when it is “compared”

with the Hospitality Index of another platform towards the same Quality goal,

with the same set of weights.

• The Hospitality framework is a framework which defines a phase-by-phase de-

scription for calculating Hospitality Indices for one or more platforms towards

one or more Quality goals.



66 Chatbot-building Platforms

Identify
Quality
Attributes

Identify
Architectural

Tactics

List of
QAs Identify

Platform
Features

Evaluate
Platform

List of
Desirable
Features

Calculate
Hospitality
Indices

List of
Tactics

Feature
Availability

Table

Platform
Inspection

Feature
Thresholding

1 2 3 4 5

Figure 3.9: Different phases in application of the Hospitality Framework

3.5.2 Using Hospitality

Figure 3.9 shows the phases of the Hospitality framework. We describe these phases

in brief. We present a case study in Section 3.6.1 to show the application of these

steps over for a sample chatbot project.

• Phase 1 - Identify Quality Attributes:

In the first phase, the Software Architect analyses the user requirements. The

requirements are usually divided into the categories of functional and non-

functional. This categorisation may not always be crisp, and these require-

ments may not be independent of each other either. The art of carving out

these distinctions is in the hands of the Software Architect. We do not de-

tail this step as it involves a non-trivial process involving the application of

existing Architectural knowledge and a substantial amount of experience.

• Phase 2 - Identify Architectural Tactics:

The output of the first phase of the framework is a set of QAs to achieve. The

next step is to delve deeper for each QA and come up with a set of Tactics to

meet them in practice. There are existing bodies of knowledge that attempt

to catalogue these Tactics or, discuss the Architectural Styles which employ

them (e.g. [163], [164], [165], [166] and [167]). Referencing such catalogues

could be the first step towards coming up with a set of useful Tactics. It must

be kept in mind that many times, Tactics presented in catalogues may be too

abstract to apply directly for a particular use case. In such cases, a Software



3.5 Hospitality of a Chatbot-building Platform 67

Architect may come up with a set of custom Tactics also. The overall idea

is to create a list of feasible, actionable points that can be implemented to

achieve the QAs in the picture.

• Phase 3 - Identify Platform Features:

By the end of the second phase, the Software Architect has a list of actionable

points, in the form of Architectural Tactics that are supposed to be baked in

the chatbot. The next step is to figure out how a chatbot-building platform

can ease the job of the developers and reduce the overall implementation time.

This phase involves a shallow literature survey of the candidate chatbot plat-

forms. The idea is to get an overview of their capabilities. Gathering opinions

of developers with prior chatbot-building experience (if there are any in the

team) can also be helpful in this phase. These platforms are still in initial

stages, undergoing rapid changes to incorporate new features. Thus, the best

resources for this phase are technical blogs (e.g. [168], [92] and [93]). There

are also dedicated websites, where practitioners building chatbots, share their

experiences (e.g. [169] and [170]). Browsing through these resources can be a

good exercise to understand the general capabilities of the candidate platforms.

Although these resources may provide the latest updates, and discuss the

state-of-the-art features in the arena, they almost always have inherent bi-

ases in favour or against specific platforms. Caution must be taken to make

sure that these biases are not transferred in the process, affecting objectivity.

The Software Architect, therefore, should refrain from studying a platform in

greater detail at this step. A shallow reading to absorb the essence is enough.

After surveying these platforms, the Software Architect can come up with a

list of desirable features expected from a chatbot-building platform. The lists

presented in Section 3.4 can also be helpful at this stage. These features facil-

itate the implementation of one or more Tactics that the Software Architect

had listed down at the end of the previous phase.

• Phase 4 - Evaluate Platforms:

In the previous phase, a list of desirable features was produced. In the best-case

scenario, there may be one or more platforms, which offer all the features in

the above list. However, in most cases, platforms would differ in their feature-



68 Chatbot-building Platforms

Feature Ability to externalise response generation
Platform Lex
Status Limited to AWS Lambda Functions [82]
Criteria The platform should allow direct invocation of business logic present

at a remote location, accessible via a webhook.
Decision “7” (Not available)
Reason An external webhook can be invoked via an HTTP call from a

Lambda function (e.g. using cURL [111]), however, it cannot be
called directly. This implies additional, undesirable overhead.

(a)

Feature Ability to provide default values for slots
Platform Watson Assistant
Status Cannot be set at either Parameter, or Intent level
Criteria The platform should allow setting of default values for certain pa-

rameters, and use them for response generation instead of prompting
the user.

Decision “3” (Available)
Reason Watson Assistant provides a tree-like flow graph to process custom

business logic. Default values for certain parameters can be set in
ancestor nodes, and response can be processed in descendant nodes.

(b)

Figure 3.10: Examples of Feature Cards for two different features and platforms

set, and this decision may not be straightforward. In this phase, the Software

Architect inspects the platforms for the presence or absence of a feature. In

case, a feature is only partially available, or available but its effectiveness is

not up to the satisfaction level, the feature requires some more introspection.

Thus, this phase has two activities, which run in parallel - Platform Inspection

and Feature Thresholding.

– Platform Inspection: The major objective of this phase is to put a “3”

or a “7” against every feature in the list of desired features, for every can-

didate platform, indicating “available” or “not available” respectively. At

this stage, a deeper analysis of these platforms is required. It involves

referring to documentation and tutorials, going through developer forums

and even using out-of-the-box techniques such as checking posts on trou-



3.5 Hospitality of a Chatbot-building Platform 69

bleshooting websites like Stack Overflow [171] for common user queries

related to the platform. It must be noted that the idea should not be

reading tutorials or documentation pages serially. Instead, the goal is to

dig inside to find if a feature is available or not.

– Feature Thresholding: The decision to put a “3” or a “7” against all

the features in the list may not always be boolean in nature. It is possible

that the feature is provided with some limitations. In such cases, the

issue that the Software Architect has to resolve is whether the support of

the feature is helpful for the project or not? We suggest creating Feature

Cards for such cases, similar to those shown in Figure 3.10. The Software

Architect can then pass these cards to other stakeholders of the project,

such as developers and testers, to collect their opinions. The Software

Architect can make a final call after analysing all the cards.

• Phase 5 - Calculate Hospitality Indices:

It brings us to the final phase of the framework, where the Hospitality indices

are calculated. As mentioned in Section 3.5.1, Hospitality Indices can be

calculated at either the Tactic level or the QA level. To explain the process of

calculation, we make use of the following notations:

– qi: A QA in consideration, for i=1,2,..,n

– {Ti}: List of Tactics in consideration, for i=1,2,..,n; where Ti = {tj}; for

j=1,2,..,r represent Tactics for achieving qi

– {f j
i }: List of all the Features associated with a Tactic, where f j

i represents

features desired by the Tactic tj of the QA qi

– {pk}: List of candidate platforms in consideration; for k =1,2,..,m

– {af j
ik}: List of features marked with “3”, meaning “available”, where

af j
ik represents the list of such features available in the platform pk from

the list f j
i

Hospitality Index for a particular Tactic, Hj
ik, is defined as:

Hj
ik = |af j

ik| / |f j
i |



70 Chatbot-building Platforms

To calculate Hospitality Index for a specific QA, we can assign relative weights

to the Tactics associated with it. Let

TWi = {twj}; where twj represent the relative weight of Tactic tj from list Ti,

associated with qi.

The Hospitality Index for platform pk, for the QA qi, represented as Hik, can

be given by:

Hik =
∑

∀tj∈Ti
( twj * Hj

ik )

If we assume equal weight for all the Tactics, then Hik becomes:

Hik =
∑

∀tj∈Ti
( Hj

ik ) / |Ti|

Figure 3.11 shows an overview of the calculation process. There is one point

worth mentioning here - the same feature may contribute towards the realisa-

tion of more than one Tactic.

We now show one possible way of using the Hospitality Indices, to rank the

candidate platforms. The field of Multi-criteria Decision Analysis or MCDA[172]

in short, attempts to resolve problems of this nature. One such technique from the

area is called TOPSIS (Technique for Order of Preference by Similarity to Ideal

Solution)[173]. TOPSIS requires the problem to be formulated in terms of a set

of alternatives, and a set of criteria. The process described below can be used

for selecting a platform from some candidates (the set of alternatives), given the

Hospitality Indices for the quality attributes in consideration (the set of criteria)

and relative weights for preferring one attribute over the other. We summarise the

steps as following:

• Step 1: If there are m candidate platforms, and n concerned QAs, generate a

Hospitality Matrix as:

HM = {hmij}mxn; for i = 1..m and j = 1..n; where hmij = Hji

(Hji being the Hospitality Index of platform i towards QA j)

• Step 2: Normalize the Hospitality Matrix as:

R = {rij}mxn; where rij = hmij/max∀i(hmij)



3.5 Hospitality of a Chatbot-building Platform 71

=		...=		...=		...=		...

Hospitality Index of
the platform towards

QA1

Hospitality Index of
the platform towards

QA2

Hospitality Index of
the platform towards

QAi

Hospitality Index of
the platform towards

Tactic2 for QA1

Hospitality Index of
the platform towards

Tactic1 for QA2

Hospitality Index of
the platform towards

Tactic2 for QA2

Hospitality Index of
the platform towards

Tactic1 for QA1

Hospitality Index of
the platform towards

Tactic1 for QAi

Hospitality Index of
the platform towards

Tactic2 for QAi

Availability of Desired Features on platformk

af1k af2k af7kaf3k af4k af5k af6k

✓ ✗ ✓ ✓ ✓ ✗ ✗

0 01 1 1 01

=		0+1+1	=	2 =		1+1+1+0	=	3H2k
2H1k

2H1k
1 H2k

1 Hik
1 Hik

2

tw1 tw2
tw1 tw2 tw1 tw2

=		H1k tw1*H1k
1 +

tw2*H1k
2 +			...

=		H2k tw1*H2k
1 +

tw2*H2k
2 +			...

=		Hik tw1*Hik
1 +

tw2*Hik
2 +			...

Hospitality Indices of
the candidate
platformk for

different QAs:
[ H1k , H2k ... Hik  ]

✓ Feature	Available

✗ Feature	Unavailable

Figure 3.11: An overview of the Hospitality Indices Calculation process

• Step 3: Generate a weighted, normalized matrix, T :

{wi}: List of weights, where, wi is the relative weight associated with QA qi

T = {tij}mxn; where tij = wj x rij

The weights here are normalised. Weights can be normalised by dividing each

weight by the sum of all.

• Step 4: Next, the best and the worst possible alternatives are found by:

Best possible, Ab = { (max∀i=1..m(tij)|j = 1..n)}
Worst possible Aw = { (min∀i=1..m(tij)|j = 1..n)}

• Step 5: Now, find the “distance” of candidate platform i, from the best, and

the worst alternative:

dib =
√∑

∀j(tij − tbj)2

diw =
√∑

∀j(tij − twj)2



72 Chatbot-building Platforms

• Step 6: Finally, find the similarity with the best possible alternative of candi-

date platform i as:

Sib = diw / (dib + diw)

The candidate platforms can now be ranked in non-decreasing order of Sib values.

The candidate with the highest value for Sib is the recommended platform.

3.6 Case Studies

We also present two case studies that are relevant for understanding the importance

of chatbot-building platforms. The first case study applies the Hospitality framework

to three chatbot platforms, and show the implementation of all the phases discussed

in Section 3.5.2, for a sample use case. The second case study takes the same three

platforms, and report their current support for the list of desired features covered

in Section 3.4.

3.6.1 Sample application of the Hospitality Framework

Consider the example of a store that sells a variety of fruits. The store plans to

launch a website, as well as a mobile app for its customers. On the website, a popup

window can engage users in a text chat, where users can enquire, browse and buy

fruits. In the mobile app, the users can do the same, either through a text chat,

or a voice chat (the user speaks her query, and response from the system is spoken

back). The project involves building a chatbot for this use case.

It is clear that some components involved in these applications are relatively

standard, with which software practitioners are well versed. We focus on the need

to build the chatbot component, which consumes the user’s inputs and produces

appropriate outputs. There might be other components, too, based on different

requirements.

3.6.1.1 Phase 1: Identify Quality Attributes

For the sample use case of a fruit store, let us assume that the Software Archi-

tect noted down the requirements, as shown in Figure 3.12. We focus our attention



3.6 Case Studies 73

Functional Requirements

- Need an app as well as a website

- User could browse through fruits available in the inventory

- Answer user queries about fruit prices, availability etc.

- User should be able to buy fruits

- If the user needs directions to the store, provide guidance

- Allow typed text/spoken queries on the app
(a)

Non-functional Requirements

- Keep chat transcripts onsite (privacy concerns)

- Chatbot component needs access from multiple locations (app/website)

- Will have access to inventory, require some authentication

- Need voice-to-text/text-to-voice capability, if the chatbot cannot handle it
implicitly

- Keep the bot simple; don’t attempt to answer queries with low confidence

- Add counter-examples to avoid responding to queries like “How’s the
weather”?

- Validate the bot before deployment, check behaviour for common user ut-
terances

- Response strings and prompts might change/customised
(b)

Figure 3.12: Software Architect’s notes, representing the requirements for the Fruit
Store applications

mostly on the non-functional requirements, as they provide hints towards the promi-

nent QAs associated with the application. For our purpose, we are interested only in

the QAs that the chatbot component is expected to exhibit, and the issues related

to its integration with the Containing system.

Suppose, the Software Architect delineates the following QAs after inspecting

the requirements:

• Since the responses provided to the user, and the paraphrasing of questions

could be altered; it should be easy to modify the built chatbot later, without

cascading changes. It makes Modifiability an important aspect of the chatbot

component.



74 Chatbot-building Platforms

• Keeping control over the chat data is important, making Privacy a prominent

concern. Also, protecting data from any kind of eavesdropping means Security

concerns should not be neglected either.

• The chatbot needs to be integrated with the UI as well as with the inventory. It

needs to be accessed via the app, as well as the website. Better Interoperability

of the chatbot component is probably the most critical aspect.

• It is clear that the chatbot won’t work in all cases, but it should try to cater to

common queries and natural digressions. It should also avoid getting into awk-

ward situations arising due to confusion in understanding the user’s intentions.

Reliability, therefore, is important too.

It must be noted that there may be other QAs involved in the example. However,

to highlight the subsequent phases of the framework, we stick to the above QAs.

This culminates the first phase of the Hospitality framework.

3.6.1.2 Phase 2: Identify Architectural Tactics

Finding relevant Architectural Tactics involves browsing through multiple cata-

logues. However, Tactics presented in catalogues may be too abstract to apply

directly for a particular use case. In such cases, a Software Architect may come up

with a set of custom Tactics also. The overall idea is to create a list of possible

actions that can be implemented to achieve the QAs in the picture. For the sample

use case that we have been tracking, Table 3.6 shows some Architectural Tactics

that may be useful in achieving the QAs mentioned in Section 3.6.1.1.

These Tactics are derived based on available Architectural knowledge, as well as

considerations for the particular use case. For example, Abstract Common Services,

Defer Binding and Split Module are standard Modifiability Tactics available in the

Software Architectural Body of Knowledge[163]. On the other hand, Manage In-

terfaces and Support multiple Data Formats are the Tactics which are derived from

existing knowledge, to suit the particular use case in consideration. Either way,

Tactics can be considered as a handle for clubbing related platform features, which

can be of interest to the Software Architect. At the end of this phase, the Software



3.6 Case Studies 75

Table 3.6: Finding Tactics for Quality Attributes

QA Tactic Reason

Abstract Common Services Keeping intents, parameters and flow
logic separate allows adding or modify-
ing them independently.

Defer Binding Allows tailored responses based on user
inputs.M

o
d
ifi

ab
il
it

y

Split Module Separates the intent matching from
business logic.

Authenticate
Communication

Prevents the chatbot from unautho-
rized access (superfluous calls to plat-
form may incur additional cost).

Protect Data at Rest Keeps the conversations between users
and the store private.

S
ec

u
ri

ty
&

P
ri

va
cy

Protect Data in
Motion

Prevents breaches due to eavesdropping
(e.g. Man-in-the-middle attacks).

Manage Interfaces Require both ingress and egress capa-
bilities, to and from the chatbot (e.g.
API access).

In
te

ro
p

er
ab

il
it

y

Support multiple
Data Formats

Chatbot needs to take queries (and
send responses) in both text and audio
formats.

Validate common
use cases

Verifies that expected user utterances
are properly processed by the chatbot.

Prevent Failures Restricts the chatbot from responding
with low confidence.

R
el

ia
b
il
it

y

Recover from
Failures

Handles known nuances of common
conversation (e.g. assuming defaults
for missing information).



76 Chatbot-building Platforms

Table 3.7: A comparison between possible conversations for the Fruit Seller chatbot,
with and without digression support

With digressions support Without digressions support
Bot: What can I do for you? Bot: What can I do for you?
User: I want to order fruits User: I want to order fruits
Bot: Which fruit? Bot: Which fruit?
User: What do you have now? User: What do you have now?
Bot: Bananas and Apples. Bot: Sorry, we don’t have that!
Bot: Which fruit? Bot: What can I do for you?
User: Apples User: What fruits do you have?
Bot: Ok. Ordering Apples... Bot: Bananas and Apples.

Bot: What can I do for you?
User: I want to order apples
Bot: Ok. Ordering Apples...

Architect has an action plan, i.e. a set of Tactics, which are expected to be achieved

when the chatbot is implemented.

3.6.1.3 Phase 3: Identify Platform Features

Table 3.8 shows some features that the Software Architect may narrow down for

the tactics shown in Table 3.6. An example of a useful feature exposed by a plat-

form would be the ability to handle digressions implicitly. Digressions are natural

discourses in a slightly different direction when two human beings converse. We

discussed digressions earlier in Section 3.4.5. An example of a conversation which

shows the importance of handling digressions was shown in Figure 3.8. For the Fruit

Store chatbot, a sample conversation with the user, with and without handling di-

gressions, is shown in Table 3.7. One can see that while the user could still achieve

what she wanted (ordering apples), the two chatbots differ from each other in under-

standing a natural digression in the conversation. The latter could anticipate and

prevent a potential failure in understanding the user’s intention, making it more

reliable than the former.

As another example, to keep the chatbot component easily modifiable, it should

be desirable to keep the intents and parameters independent from each other. In

simpler terms, it should be possible to create an “intent without any parameters”



3.6 Case Studies 77

as well as a “parameter without any intent”. This abstraction can help to change

them separately, without a cascading effect on the other. This phase ends up with a

list of desirable features that the software architect would like to see in the chatbot

building platforms. Table 3.8 shows the examples of these features.

3.6.1.4 Phase 4: Evaluate Platforms

The next phase of the framework involves putting “3” and “7” against the features

shown in Table 3.8, for each candidate platform. For the case study, we chose three

popular chatbot-building platforms for evaluation - Google Dialogflow [27], IBM

Watson Assistant [21] and Amazon Lex [28]. For all the platforms, we assumed the

role of a Software Architect, and performed the two tasks involved in the evaluation -

Platform Inspection and Feature Thresholding - as discussed in Section 3.5.2. Table

3.9 shows the results of this phase. It must be noted that these “3” and “7” may

represent a subjective analysis (involving Feature Thresholding).

3.6.1.5 Phase 5: Calculate Hospitality Indices

The last phase of the framework involves calculation of different Hospitality Indices.

The Hospitality Indices at the Tactic level are shown in Table 3.10. The Hospitality

Indices at the QA level, with equal weightage to all tactics, are shown in Table 3.11.

The process followed for calculating these Indices is detailed in Section 3.5.2. The

values for Tactics are calculated by assigning a value of 1 to a “3” and a value of 0

to a “7”, and then dividing the sum of the values for its features by the number of

features associated with the Tactic. For example, the value of 0.66 for the Tactic

Abstract Common Services for Dialogflow, is calculated from Table 3.8 and 3.9 as

(1 + 1 + 0) / 3 = 0.66. In words, this means that two out of the three features

desired from the platform to achieve the Tactic are provided. Similarly, Hospitality

Index at QA level, is calculated by multiplying the weight of each Tactic to its

Hospitality Index. For example, the Hospitality Index for the QA Modifiability for

Dialogflow, is calculated from Table 3.8, 3.9 and 3.10, assuming equal weights for

all Tactics, as (0.66 + 0.66 + 1) / 3 = 0.773.



78 Chatbot-building Platforms

Table 3.8: Using Platform Features for calculating Hospitality Index, at Tactic level

QA Tactics Useful Platform Features

Ability to create intents independently

Ability to create parameters independently
Abstract
Common
Services Ability to manage conversation flow independently

Ability to externalise response generation

Allow placeholders in response to fill parameter val-
uesDefer Binding

Allow conditional responses

Ability to externalise parameter validation

M
o
d
ifi

ab
il
it

y

Split Module
Ability to externalise response generation

Ability to create and verify credentials for accessing
the chatbotAuthenticate

Communication Ability to supply credentials to an external source

Ability to create and verify credentials for accessing
chat data

Protect Data at
Rest

Ability to keep chat transcripts onsite

S
ec

u
ri

ty
&

P
ri

va
cy

Protect Data in
Motion

Use secured channels only for communication (e.g.
allow https and block http)

Allow API access for intent classification

Allow API access for slot filling
Manage
Interfaces

Ability to trigger external events

Ability to receive voice input

Provide transcribed text from speech

In
te

ro
p

er
ab

il
it

y

Support
multiple Data
Formats Ability to send voice output

Provide Test Console to observe chatbot response for
specific inputsValidate

common use
cases

Provide Test Console to observe the debug informa-
tion for specific inputs

Ability to set confidence threshold for intent classifi-
cation

Ability to provide counter-examples
Prevent Failures

Ability to digress and return

Ability to provide default conversation flow

R
el

ia
b
il
it

y

Recover from
Failures Ability to provide default values for slots



3.6 Case Studies 79

Table 3.9: Availability of useful platform features in three candidate platforms

Useful Platform Features Feature Available

WA DF LX

Ability to create intents independently 3 3 3

Ability to create parameters independently 3 3 3

Ability to manage conversation flow independently 3 7 7

Ability to externalise response generation 3 3 7

Allow placeholders in response to fill parameter values 3 3 3

Allow conditional responses 3 7 7

Ability to externalise parameter validation 3 3 7

Ability to create and verify credentials for accessing the
chatbot

3 3 3

Ability to supply credentials to an external source 3 3 7

Ability to create and verify credentials for accessing chat
data

3 3 3

Ability to keep chat transcripts onsite 3 7 7

Use secured channels only for communication (e.g. allow
https and block http)

3 3 3

Allow API access for intent classification 3 3 3

Allow API access for slot filling 3 3 3

Ability to trigger external events 3 3 7

Ability to receive voice input 7 3 3

Provide transcribed text from speech 7 3 3

Ability to send voice output 7 3 3

Provide Test Console to observe chatbot response for
specific inputs

3 3 3

Provide Test Console to observe the debug information
for specific inputs

3 3 3

Ability to set confidence threshold for intent classifica-
tion

3 3 7

Ability to provide counter-examples 3 3 7

Ability to digress and return 3 7 7

Ability to provide default conversation flow 3 3 3

Ability to provide default values for slots 3 3 7

WA - Watson Assistant DF - Dialogflow LX - Lex



80 Chatbot-building Platforms

Table 3.10: Hospitality Indices at Tactic level for the three candidate platforms

Tactic Hospitality Index

Watson
Assistant

Dialogflow Lex

Abstract Common Services 1 0.66 0.66

Defer Binding 1 0.66 0.33

Split Module 1 1 0

Authenticate Communication 1 1 0.5

Protect Data at Rest 1 0.5 0.5

Protect Data in Motion 1 1 1

Manage Interfaces 1 1 0.66

Support multiple Data Formats 0 1 1

Validate common use cases 1 1 1

Prevent Failures 1 0.66 0

Recover from Failures 1 1 0.5

Table 3.11: Hospitality Indices at QA level for the three candidate platforms

Quality Attribute Hospitality Index

Watson
Assistant

Dialogflow Lex

Modifiability 1.000 0.773 0.330

Security & Privacy 1.000 0.833 0.667

Interoperability 0.500 1.000 0.830

Reliability 1.000 0.887 0.500

3.6.2 Support of Desired Features in Three Platforms

In Section 3.6.2, we introduced a set of desirable features, distributed across five

categories, which a chatbot-building platform should expose. In this case study, we

present the results of our analysis over three popular chatbot-building platforms,

from the perspective of their support for these features. We picked the same three

platforms that we discussed in Section 3.6.1, i.e. IBM Watson Assistant [21], Google

Dialogflow [27] and Amazon Lex [28]. Table 3.12 shows a relative comparison be-

tween the support of the desirable features on these platforms. The ranks are on

a scale of 0 to 1. A rank of 1 means that the feature is supported. A rank of 0



3.7 Related Work and Further Reading 81

means the feature is not supported. A number in between implies that the feature

is supported by the platform, but not up to satisfactory levels (in comparison with

the other platforms). The values for the middle and top tiers of the hierarchy are

calculated by taking a weighted-sums of their constituent features. It means that

each feature in the bottom tier has the same weight - an assumption which is made

to consider the most general case (i.e. where these features do not have more or less

value for a chatbot project). These values, thus, should only be compared with other

values in the same row, and not with any other value across rows or columns. A

row, here, represents the “relative” support of the feature (or categories of features)

by the three platforms.

We also provide a short description for some entries in Table 3.12 in Appendix B. The

capital letters shown in Table 3.12 (e.g. (A) or (B)) are keys to these explanations.

3.7 Related Work and Further Reading

Evaluating Software Architectures prior to their implementation has been studied

by multiple researchers, yet there is no single method or framework that is uniformly

accepted by the Software Architects. The Software Architecture Analysis Method

or SAAM [174] considered an Architecture to have three perspectives - functionality,

structure and allocation. When SAAM came out, one of the goals it had was to pro-

mote common terminology for describing Software Architecture. It was one of the

earliest works at analysing Software Architectures. The Architecture Tradeoff Anal-

ysis Method or ATAM [175], built upon learnings from SAAM, was one of the first

attempts at analysis Software Architectures through scenarios, a process commonly

known as Scenario-based Software Architecture Evaluation. ATAM is an iterative

analysis model, which starts by collecting the scenarios and constraints associated

with the project, and compares probable Architectural alternatives against multiple

Quality Attributes. A more recent evaluation method is the Cost Benefit Analysis

Method or CBAM [176]. The approach analyses the benefits or the costs of a par-

ticular design decision. CBMA tries to account for costs and benefits “in future” by

accounting them appropriately, and guides the design of the Architecture accord-

ingly. There have been efforts dedicated towards tooling for Architectures evaluation

(such as [177], [178] and [179]), but tool support for the process is still rather lim-



82 Chatbot-building Platforms

Table 3.12: Relative support of the Desired Features on three platforms

Desired Platform Features DF WA LX

Intent Management 1 0.9583 0.8177

Create Intents 1 1 0.9375

Add Parameters 1 1 1

Add training examples 1 1 0.75 (A)

Tag Parameter occurrences in training

examples

1 1 1 (A)

Map Parameter occurrences to specific

values

1 1 0 (A)

Update Intents 1 1 1

Provide new training examples 1 1 1

Edit existing training examples 1 1 1

Remove existing training examples 1 1 1

Delete Intents 1 1 1

Default Intent 1 0.8333 0.3333

Provide default response 1 1 1

Set a minimum confidence threshold to

trigger any Intent

1 0.75 (B) 0 (B)

Provide counterexamples – to trigger

Default Intent explicitly

1 0.75 (C) 0 (C)

Entity & Parameter Management 1 0.9167 0.8833

Create Parameters 1 0.75 1

Provide possible values for the Parameter 1 1 1

Provide synonymous occurrences for

provided values

1 1 1

Allow the extension of possible values list

automatically

1 1 1

Disallow extension of possible values list

automatically

1 0 (D) 1

DF - Dialogflow WA - Watson Assistant LX - Lex



3.7 Related Work and Further Reading 83

Table 3.12 – continued from previous page

Desired Platform Features DF WA LX

Update Parameters 1 1 0.65

Add more possible values for the

parameter

1 1 0.75 (E)

Edit a provided value 1 1 0.75 (E)

Change synonymous occurrences 1 1 0.25 (E)

Delete synonymous occurrences 1 1 0.75 (E)

Remove existing values for the parameter 1 1 0.75 (E)

Delete Parameters 1 1 1

Fulfilment Management 0.8417 0.9833 0.7667

Slot filling 1 1 1

Provide prompts to receive inputs from the

user during conversation, for filling a

required Slot

1 1 1

Show options (one or more buttons for the

user to click, out of a limited set)

1 1 1

Provide a static response for some queries 0.875 1 0.75

Textual Response 1 1 0.75 (F)

Multimedia Response

(Image/Audio/Video etc.)

0.75 (G) 1 0.75 (F)

Provide a dynamically crafted response for

some queries

0.3333 0.9167 0.3333

Allow the response to have placeholders for

Slot values and Context variables

1 1 1

Allow the response to have placeholders for

secondary information, e.g. Intent classifi-

cation confidence or computed values

0 (H) 1 0 (H)

Dynamic response based on variable

values (e.g. using conditional operators or

if-else ladders)

0 (H) 0.75 (H) 0 (H)

DF - Dialogflow WA - Watson Assistant LX - Lex



84 Chatbot-building Platforms

Table 3.12 – continued from previous page

Desired Platform Features DF WA LX

Trigger external events 1 1 1

Control Slot values interpretation 1 1 0.75

Get the supplied value 1 1 0.75 (I)

Get the reference value 1 1 0.75 (I)

Integration 0.75 0.9375 0.6875

Send requests to a public URL and expect a

response back

0.75 (J) 1 (J) 0.25 (J)

Send request to a restricted source (a URL

with domain restrictions or a function that

can be invoked internally by the platform)

and expect a response back

0.25 (K) 1 (K) 1 (K)

Interfaces to integrate with existing platforms

(e.g. Facebook Messenger, Slack, Telegram

etc.)

1 (L) 0.75 (L) 0.5 (L)

API to create, modify, train, use and delete

the Chatbot (e.g. REST APIs)

1 (M) 1 (M) 1 (M)

Conversation Flow Management 0.5625 0.6875 0.3125

Pass contextual information from the cur-

rently triggered Intent to any subsequently

triggered Intents in the conversation flow

1 1 0.5 (N)

Handle follow-ups (e.g. Confirmations such

as Yes or No, Next or Previous etc.)

1 (O) 0.5 (O) (O)

Handle digressions 0.25 (P) 1 (P) 0 (P)

Process multiple-Intents queries 0 (Q) 0.25 (Q) 0 (Q)

DF - Dialogflow WA - Watson Assistant LX - Lex

ited. There are a number of resources which discuss and compare Scenario-based

Architecture evaluation, such as [180], [181] and [182].



3.7 Related Work and Further Reading 85

The work in this chapter is mostly inspired by the work of Agrawal et al. [161].

To the best of our knowledge, the work stands out on its own. The Hospitality

Quality Attribute defined by them significantly differs from the other Quality At-

tributes. First, it is an attribute of the platform used to build a product or service,

instead of the product or service itself (or its Containing environment). Second,

the Quality Attribute is defined along with a metric - the Hospitality Index, and a

framework to evaluate the metric - the Hospitality framework. This triad makes a

good combination for applying Hospitality-related concepts to platforms from any

domain. While the original work applied it on the cloud platforms, we applied the

same on chatbot-building platforms. The major hurdle in the application of the

framework to a new domain is to enlist the desired features of the platforms of the

specific domain and map them to Tactics and QAs. The hierarchical list of desired

features in a chatbot-building platform can help do so.

Several researchers have compared the chatbot platforms from the perspective

of the accuracy for matching intents (e.g. [183] and [184]) using standard NLP

methods [185]. Berger et al. [186] presented chatbots categorised by properties

such as forms of communication, knowledge domain and goal-based. Canonico et

al. [187] have presented a taxonomy focusing on 13 facets of chatbot platforms such

as usability for developers, language support, linkable intents and price. Braun et

al. [183] presented a reference architecture for chatbot platforms, which provides a

handle to compare features. Peras [188] presented five perspectives for chatbot eval-

uation - user experience, information retrieval, linguistics, technology, and business

for comparison. Braun et al. [189] also showcased a framework for comparison using

features such as Input/Output, Timing, Flow, Platform and Understanding. Daniel

et al. [190] highlighted the need for attributes such as Productivity, Maintainabil-

ity, Reusability and Interoperability as motivation for their multi-platform chatbot

modelling framework - Jarvis.

For further reading, checking out platform comparison articles (e.g. [129], [130],

[133], [93] and [191]) is a good starting point. Almost all chatbot companies operate

blogs that cover latest developments in chatbot-related technology (e.g. [169], [192],

[193] and [170]). However, these sources are almost always biased towards one

platform (e.g. as admitted by the author in a Disclaimer on [92]). Therefore,

these articles may not always provide a balanced view of the capabilities of other



86 Chatbot-building Platforms

platforms. However, since the chatbot-building platforms are constantly evolving,

with new entrants joining the field every year, research papers may not be as helpful

as recent articles on the Internet. Another quick reference option is to check out

the Release Notes on the platforms. They usually mention, in short, the features

recently added to the platform, and can be helpful while inspecting the platform for

desired features.

3.8 Summary

This chapter was dedicated to describing the importance of chatbot-building plat-

forms. We first discussed some common Constraints associated with chatbot de-

velopment, which may force the developers to do more custom development, rather

than using a platform. These issues included problems with Privacy, Developmental

Flexibility, Natural Language support (especially for languages other than English),

Pricing (related to the development and post-deployment operation) and Geograph-

ical proximity of the deployment servers.

We then presented a categorisation of chatbot-building platforms based on the

services they offer. The NLP-as-a-service (NLPaaS) platforms provide support for

basic NLP tasks such as Entity Extraction and Text Categorisation, which can be

used to compose a chatbot. The Conversation-as-a-Service (CaaS) platforms provide

support for tasks that are specific to a chatbot, such as matching queries to Intents,

parsing Parameter values from user utterances and managing the flow of the con-

versation. The ChatWidget-as-a-Service (CWaaS) platforms offer visual interfaces

to build chatbots, often using a drag-and-drop mechanism. The chatbots built on

CWaaS platforms are usually tightly coupled with a deployment environment since

they provide a chat widget that can be deployed straight away on these platforms.

We also presented a contrasting description of the dashboards of CaaS and

CWaaS platforms. While the dashboards of CaaS platforms are built to take textual

input from the developers, the CWaaS platforms provide an interface similar to that

used for making flowcharts.

Next, we presented a list of desired features that a chatbot-building platform

should expose to support a wide range of chatbot use cases. We arranged these

features in five major categories, which are based on the discussions in Chapter 2.



3.8 Summary 87

These categories included; features related to managing Intents, features related to

managing Parameters, features dealing with Conversational flow, features dealing

with Fulfilments and features relating to chatbot’s Integrations with the rest of the

environment. This list can also be helpful for selecting platforms based on their

versatility.

We then presented an application of the Hospitality framework over the chatbot-

building platforms. The framework allows evaluation of support that a particular

platform provides towards achieving Quality goals. These goals may be implement-

ing an Architectural Tactic or maximising a Quality Attribute. The framework

starts with a set of Quality Attributes. A collection of Architectural Tactics are

then found to achieve them. For every Tactic, the Software Architect has to come

up with a list of features which can be helpful in implementation of the Tactic. The

candidate platforms are then evaluated, and the availability of these features are

compared against some threshold, to consider them useful or useless. The Hospital-

ity Indices can then be computed using a weighted sum approach, for either a Tactic

or a Quality Attribute. A Multi-criteria Decision Analysis method, such as TOP-

SIS, can then generate a ranked list of the platforms, provided that the Software

Architect can provide relative weights to the Quality Attribute in consideration.

We then presented two case studies. The first showed the application of the

Hospitality framework on a simple set of chatbot use cases. The second one involved

an in-depth analysis of three chatbot-building platforms, and inspect their relative

support for the proposed desired features in the chapter.



88 Chatbot-building Platforms



Chapter 4

Contextual Reactive Pattern

In Chapter 2, we discussed the architecture of a chatbot and its Containing system.

Chapter 3 was dedicated towards discussion of chatbot-building platforms. In this

chapter, we move ahead to the next problem of defining a chatbot on a chatbot-

building platform. In particular, this chapter attempts to answer the following two

question:

• Given a set of use cases to be served by a chatbot, how can we express them

on a chatbot-building platform?

• Given that most software development projects today are built in iterations,

how can we model the definition of the chatbot, such that it can be easily

modified and improved over multiple iterations?

This chapter is organised differently from the rest of the chapters since it presents

a pattern called the Contextual Reactive chatbot definition pattern. The organisa-

tion is loosely based on the document titled “How to write a pattern?” by Tim

Wellhausen and Andreas Fießer [194].

This chapter is organised as follows; In Section 4.1, we provide an overview

of the Contextual Reactive pattern, describing its scope and the challenges that

it attempts to mitigate. Next, in Section 4.2, we describe the solution that this

pattern presents. We then discuss some examples of how this pattern is adopted

by real-world platforms in Section 4.3. Section 4.4 presents a case study, where we

show the details of describing a chatbot’s use cases on a platform. We then discuss



90 Contextual Reactive Pattern

the consequences of this definition pattern, including its benefits and limitations, in

Section 4.5. Finally, we summarise the chapter in Section 4.6.

4.1 Pattern Overview

Building a chatbot with an iterative development process poses certain challenges for

the chatbot developer. The developer is expected to produce a deployable version of

the chatbot at the end of a short development cycle. In Agile Software Development,

the counterpart of use cases are user stories [195]. Every iteration should incremen-

tally increase the capability of the chatbot and implement a subset of overall user

stories based upon a priority list, similar to any other project developed using iter-

ative development. To do so, for every query the chatbot is expected to answer, the

developer must evaluate the intention of the user. Based on the intention, the query

must be processed differently, which may involve the execution of some business

logic. Besides, the processing of the query may require specific data items which the

user must supply as part of the conversation with the chatbot. Thus, the chatbot

is defined by supplying a “context” that it may encounter, and the “reaction” that

must take place when the context is observed. We call this pattern, the Contextual

Reactive pattern for chatbot definition.

4.1.1 Context

The Context of a pattern (not to be confused with the term Context in Contextual

Reactive pattern) is the overall picture where the problem and the solution to the

problem exist. The Context for the pattern is as follows:

• Organisations are rapidly adding chatbots to their business operations to im-

prove customer experience [3].

• Chatbots are being built to serve a wide variety of use cases, such as E-

commerce, Customer Service, Information Retrieval and Travel Assistance

[196].

• Any Iterative software development process (e.g. Scrum) attempts to build



4.1 Pattern Overview 91

components, including chatbots, in an incremental fashion (e.g. in Sprints)

[197] [198].

• There is an organisation which wants to deploy a chatbot to act like a con-

versational interface towards its business processes. They would like to start

with simple and non-essential business operations, and slowly move towards

more complex and essential business operations.

4.1.2 Problem

The Problem section of a pattern highlights the major issues which the pattern

addresses. The pattern may provide a comprehensive solution for these issues, or,

act as a step towards its resolution. The problem that this pattern attempts to

resolve is summarised as follows:

• To build a chatbot to cater to a set of user queries, where the chatbot acts

like a conversational interface towards accessing a set of business operations.

• To be able to produce a deployable chatbot in a short time span, albeit with

minimal features, and update it over multiple iterations to cater to all the user

queries.

• To be able to handle the imperfections in Natural NLP tasks [199] [200] asso-

ciated with the chatbot, in a graceful manner.

• To build the chatbot with no or minimal changes in business operations code-

base.

4.1.3 Forces

Forces related to a pattern are reasons that motivate the use of the solution provided

by the chatbot. This section also provides arguments in favour of this particular

solution, in case the problem can be solved via other methods as well. For the

Contextual Reactive pattern, the other major solution to the issues described in

Section 4.1.2 is to go for custom chatbot development. The Forces section, thus,

delineates the major motivating factors to use the chatbot-building platforms, and



92 Contextual Reactive Pattern

hence, use the definition pattern to model the chatbot use cases. The Forces for the

pattern are summarised as follows:

• An iterative development process, such as Scrum, provides a framework to

build software components over multiple iterations, with each iteration build-

ing upon or improving the artefact produced in previous iterations.

• Chatbot-building platforms provide crucial NLP support which reduces the

time for each iteration. They also provide better error handling mechanisms

to tackle known issues and imperfections in these NLP tasks.

• Rewriting business operations specifically to be connected to a chatbot may

increase the load on the chatbot developer, and maybe undesirable for other

reasons as well (such as preventing duplication of business logic).

4.2 Solution

In a nutshell, the problem for which this pattern proposes a solution is to define

a chatbot over a chatbot-building platform, keeping in mind that the development

may go through multiple iterations. Another aspect of the problem is that the

business operations that the chatbot has to invoke should remain as decoupled as

possible from the chatbot so that no or minimal changes are required in them. We

now describe the solution formally, in more detail:

Figure 4.1 shows the solution’s outline. The core idea is to pick a chatbot building

platform and an iterative development process. The features to be implemented in

each iteration must be mapped to a certain format and supplied to the platform,

which in turn, creates a deployable chatbot which can be used for operations.

The details of the solution are highlighted as follows:

• Pick a chatbot-building platform to perform the NLP tasks. The

chatbot building platform provides two vital services:

– For every query that the chatbot receives, the platform attempts to guess

the user’s intention. The chatbot developer predefines a set of possible

intentions, and the platform maps the query to one (and only one) of

those intentions.



4.2 Solution 93

Select a platform for 
building the Chatbot, e.g.

Dialogflow

Select an 
iterative development
process, e.g. Scrum

Select features 
to implement in 
the next iteration

Prepare a set of example
user queries representing

these features

Supply this data on the
platform in terms of

Intents, Entities, Examples
and Fulfillments

Associate each
user query to an 

Intention

Note down instances of
variable Data items in

these queries

For each Intention, define
a Processing pipeline that
performs the associated

business operation

Deploy this version of
the chatbot and 

observe its behaviour
for future enhancements

Iteration

Figure 4.1: Building Chatbots using a platform with the Contextual Reactive pattern

– A user query may provide implicit hints or explicit inputs required for

fulfilling their intention. The platform identifies these inputs, extracts

them and supplies them downstream to process the query.

• Select the set of user stories to be served by the chatbot during

the current iteration. The factors affecting this decision are specific for a

particular project, but the most important aspect is the priority of user stories

based on the business operation that they represent.

• Agree upon a set of user intentions to cater. The platform expects that

every user query must be associated with a pre-configured intention. We refer

to these intentions as Intents. The idea is to assign an appropriate processing

pipeline to each user query and generate a suitable response at the end of

the processing pipeline. From an implementation perspective, if there are two

queries, where the processing logic and the response generation method are

exactly the same, it makes sense to categorise them under the same Intent.



94 Contextual Reactive Pattern

• Figure out the required and optional data items that may be present

in a user query. The platform allows the chatbot developer to define these

data items in a fashion similar to defining variables in a program, i.e. they

have specific types (e.g. Numeric or Ordinal) and can take values from a finite

or infinite input set. We refer to these data items as Entities.

• Work out the relationships between the defined Intents and Entities.

Certain Entities may only be present in queries belonging to certain Intents.

We say that an Intent has a Slot for an Entity if the values for the Entity

can appear in queries associated with the Intent. A Slot may be “optional”,

i.e. the query can still be processed if the user does not provide a value for it,

or, it may be “required”, meaning without that particular detail, processing

pipeline cannot be invoked. For the Slots of the latter type, platforms usually

have a mechanism to produce a temporary response, in the form of a question,

asking the user to supply a value explicitly.

• Prepare a collection of possible user utterances. The platform requires

training data to build models for performing NLP tasks. This data is supplied

in terms of sample user queries. We refer to these queries as Examples. The

chatbot developer provides a few Examples for each defined Intent and tags

any instances of values associated with any defined Slots within these queries.

• Connect the processing pipelines and response generation logic to

respective intentions. The platform maps a user query to its associated In-

tent. It also attempts to parse instances of any Slot data supplied in the query.

Then the platform invokes a pre-configured processing pipeline, which we term

as the Fulfilment for the mapped Intent. This invocation involves supplying

the parsed values of Slots as well as any additional contextual information and

expecting a generated Natural Language response which is relayed to the user.

Two common examples of processing pipelines are serverless functions [201]

and REST API endpoints [202] implementing specific business operations.

• Handle the user stories to serve in next iterations. In addition to the

defined Intents, another Intent can be defined to cater to the user stories which

will be served by the chatbot in future iterations. We refer to such an Intent



4.2 Solution 95

as the others Intent. It involves providing Examples for such user stories, but

not connecting them to a processing pipeline. Instead, this Intent could be

configured to output static responses (e.g. “We currently do not support this

feature”).

• Handle imperfections in NLP tasks. In addition to the above Intents,

define another Intent to handle the “irrelevant” or “ill-formed” queries. Plat-

forms usually have a mechanism to invoke a special processing pipeline for

cases where the query could not be mapped to any defined Intent. Theoret-

ically, this can be seen as the presence of a “default” or “fallback” Intent.

Typically, the “default” Intent can either be handled via a special processing

pipeline (e.g. transferring the chat session to a human) or responded with

static responses (e.g. “Sorry, can you rephrase the query?”).

• Deploy the chatbot and collect usage data. A detailed analysis of the

chat data can provide important insights. In particular, an important dimen-

sion of inspection is the proportion of the queries that matched the others

Intent. A high percentage indicates one of the two possibilities:

– The current set of user stories catered by the chatbot represent only a

small fraction of the overall use cases that the user expects the chatbot

to serve.

– The platform is not able to perform a good job of mapping a user query to

its correct intention. It indicates that the platform needs more Examples

for training, or the quality of Examples used previously were not up to

the required quality mark.

This data may provide crucial inputs for planning the next iteration.

• Plan the next iteration. This involves catering to other user stories and

refining the definitions or Examples for the existing user stories. As more

Intents are added iteratively, the number of user stories handled by the others

Intent keeps reducing every iteration, and finally, the Intent is removed.



96 Contextual Reactive Pattern

Intent1

Intent2

Entitya Entityb Entityc

Intent3

Exampleα

Exampleβ

Exampleγ

Exampleδ

Exampleε

Fulfillments

Business
FunctionI

Business
FunctionII

Business
FunctionIII

Mapping between an Intent 
and an Entity (Slot)
Mapping between an Intent 
and it's Fulfilment logic

Mapping between an Intent
and an Example Query

Legend
Indicates no relation between
the Intent and the Entity

Figure 4.2: Solution Structure : How Entities, Intents, Examples and Fulfilments
interrelate to each other in an application.

4.2.1 Structure

The Structure subsection of the Solution section of a pattern discusses the relation-

ships between the different elements of the solution. For the Contextual Reactive

pattern, the structure shows how Intents, Entities, Examples and Fulfilments relate

to each other in a chatbot’s definition.

Figure 4.2 shows the elements of the chatbot definition and their relationships.

A summary of the elements is as follows:

• Intents: An Intent represents a collection of related user queries, associated

with a particular user story. The set of Intents for a chatbot partition all pos-

sible queries that the chatbot may receive into mutually exclusive categories.

• Entities: Entities represent real-world objects supplied implicitly in a partic-



4.2 Solution 97

ular query. Each Entity associated with a chatbot can accept a value from a

finite or infinite set, predefined at the time of chatbot definition.

• Examples: Examples are sample user queries that a user may fire at the

chatbot during a conversation. An Example is mapped to one and only one

Intent and may contain values associated with zero or more Entities.

• Fulfilments: Fulfilments represent the processing pipeline that must be exe-

cuted to prepare a response for any query. In some cases, where the response

is a static message, the platform usually provides a mechanism to output the

same to the user without making a remote function call. Fulfilments can also

be gateways to external API endpoints which can be invoked to prepare the

response (as well as perform any actions) for the given query. A fulfilment

is associated with a respective Intent and is invoked every time a query is

classified to have the said Intent.

In addition, Slot is a term that represents the instantiation of an Entity with respect

to a particular Intent. An analogy would be - Slots are to Entities, what Objects are

to Classes. A Slot thus represents the mapping between an Intent and an Entity.

4.2.2 Dynamics

The Dynamics subsection of the Solution section of a pattern discusses how the

elements come together in solving the problem when in action. For the Contextual

Reactive pattern, the details of the dynamics are usually hidden, since it is performed

by the platform. In any case, a simple representation of the process that platforms

employ is shown in Figure 4.3.

The platform collects vital pieces of the supplied information, namely the Intents,

Entities and Examples, and builds some NLP models. These models are used later

by the chatbot. Any changes - addition, deletion or modification - in any one

of these components require retraining. Some platforms, like Dialogflow [27] and

Watson Assistant [21], do this automatically on detection of a change, while some

others like Lex [28] may force the developers to do this explicitly. The training

process usually does not take more than a few minutes, hence allowing seamless

modification to the above information, as and when required.



98 Contextual Reactive Pattern

Examples Intent Entities
(Slots)

Fulfilment
Logic

Training
Intent Fulfilment

LogicIntent Fulfilment
Logic

NLP 
Model(s)

Legend

Not used for training

Figure 4.3: Solution Dynamics : How a platform uses Entities, Intents, Examples
and Fulfilments for building the chatbot.

4.2.3 Deployed Chatbot’s Sketch

At the end of each development iteration, a deployable chatbot is produced. The

models that were built after training are connected by the platform to perform

two critical tasks - Intent Classification and Parameter Extraction (also called Slot

Filling). The Fulfilments supplied by the developer are used as processing pipelines

for the queries that the chatbot receives. Figure 4.4 shows an overview of the

deployed chatbot.

After deployment, the chatbot performs some crucial NLP tasks and follows a

workflow. A typical workflow is shown in Figure 4.5. A summary of the workflow

is provided below:

1. The user asks a query. The query may have implicit values associated with

one or more Entities.

2. The chatbot performs two NLP tasks - guessing the Intent associated with the

query and finding out if there are values associated with any defined Entities,

supplied within the query.

3. For the detected Intent, the chatbot looks at the Slot details (recall that a Slot

represents a relationship between an Entity and an Intent). If there are parsed



4.2 Solution 99

Query
Intent 

Classification

Slot Filling

Prompts

Response

Fulfilment
LogicFulfilment

Logic

NLP 
Model(s)

Figure 4.4: Deployed Chatbot’s Sketch : How the platform uses the built NLP
models along with the defined Fulfilments to construct the chatbot.

User

Chatbot Processing
Pipeline

val2

response

{"intent" : "intk" ,
"slotA" : "val1" ,
"slotB" : "val2" ,
... }                 

{"response" : ...}

query ; slotA = val1

SlotB ???

Detected Intent : intk ;
Value for SlotA = val1 ;

Value for SlotB = ?

Figure 4.5: Deployed Chatbot’s Sketch : Typical workflow observed during the
operation of a chatbot.



100 Contextual Reactive Pattern

values which belong to one or more Slots, they are stored temporarily. Next,

the chatbot checks if there are any Slots defined as “required”. If present, the

chatbot checks if any values for these Slots are present in the temporary storage

or not. If not, the chatbot starts producing a series of responses, essentially

prompting the user to supply these values. This process may continue till

values for all the “required” Slots are gathered, or the chatbot may give up

after a certain number of attempts, providing a specific response configured

for such cases (the exact behaviour may vary from one platform to another).

4. Once the chatbot has values associated with all “required” Slots (and any

“optional” Slots, if provided), the chatbot passes this information to the pro-

cessing pipeline. This is the step which decouples logic associated with

business operations from the intricacies of the chatbot implementa-

tion. The processing pipeline can reside inside an external system or maybe

part of a legacy system already operational. The query may trigger an idem-

potent operation such as a lookup in a database, or, it may perform actions in

the business domain, such as creating a new booking. The details of the oper-

ation are abstracted from the chatbot. The chatbot only expects a response,

generated at the completion of the processing.

5. The response received after the processing is relayed back to the user. The

chatbot now expects another query from the user, and the cycle is repeated.

4.3 Pattern Examples

There are many platforms which provide support for building chatbots. The Con-

textual Reactive pattern for chatbot definition can be observed in almost all of them

with minor variations. We discuss three such platforms in brief - Dialogflow [27],

Watson Assistant [21] and Lex [28].

4.3.1 Dialogflow

• Intents: Each Intent is defined in the dashboard on a separate page. Typ-

ical information provided on the definition page is Intent’s name and some



4.3 Pattern Examples 101

“Training Phrases”. If the Intent has any associated Slots, the same needs to

be configured on this page itself. In Dialogflow, Slots are called “Parameters”.

Prompts can be configured for one or more Parameters on the same page. Di-

alogflow provides a set of common Intents which can be added to any chatbot

(e.g. Intents for casual conversation with a user). It also adds a Welcome and

a Deafault Fallback Intent by default to every chatbot to greet and handle

irrelevant user queries respectively.

• Entities: Each Entity is defined in the dashboard on a separate page. There

are some System Entities, which Dialogflow provides for usage directly, for

instance, Geographic Locations or instances of Time and Date. However, for

most user stories, one would need to define custom Entities, which are nominal

in nature. For each Entity, a set of possible values are defined. For each value,

synonyms can be defined. Dialogflow offers the option to intelligently extend

possible values for an Entity, in case it is not feasible to list down all of them

beforehand.

• Examples: Examples are called “Training Phrases” in Dialogflow. They are

provided directly on the definition page of the associated Intent. Dialogflow

expects that instances of any Entity are tagged in the Example, to help the Slot

Filling task. Negative Examples can be configured on the page of the Default

Fallback Intent. These Examples provide explicit hints to trap “irrelevant”

user queries.

• Fulfilments: Fulfilments can be defined in two different ways in Dialogflow.

For Intents, where the response is fixed, the response, along with placeholders

for Parameters, can be directly supplied on the Intent definition page. For

Intents requiring complex Fulfilment Logic, one has to define an Action - a

unique tag associated with the Intent - and provide a common Fulfilment

webhook on Fulfilments page. For such Intents, the chatbot sends a POST

HTTP request to the configured URL with the name of the Action and other

inputs, such as parsed values of the Slots. The webhook must provide a JSON

reply with a fixed schema. The response is then relayed back to the user.



102 Contextual Reactive Pattern

4.3.2 Watson Assistant

• Intents: Each Intent is defined in the dashboard on a separate page. Typical

information provided on the definition page is Intent’s name and some “User

examples”. The Intent name starts with a # (e.g. #schedule-query). Slot

details are not provided on the Intent definition page. Instead, they are con-

figured using the “Dialog Tree”, a tree-like Flow Management structure that

provides more Flexibility in defining Slots and Prompts. Watson Assistant

provides a Content Catalog for common use cases, from where Intents can be

imported and added to the skill. Watson Assistant does not have a Fallback

Intent. Negative examples must be marked as “irrelevant” on the Test Console

to be considered while training.

• Entities: Each Entity is defined in the dashboard on a separate page. The

Entity name starts with a @ (e.g. @FlightNumber). For each Entity, a set of

possible values are defined. For each value, synonyms can be defined. Watson

Assistant offers the option to intelligently extend possible values for an Entity,

in case it is not feasible to list down all of them beforehand. There is an

Annotations tab on the definition page, which shows Examples (across all

Intents) where some value of the Entity appears.

• Examples: Examples are called “User Examples” in Watson Assistant. They

are provided directly on the definition page of the associated Intent. Watson

Assistant expects that instances of any Entity are tagged in the Example, to

help the Slot Filling task. Negative Examples cannot be configured directly.

To provide them one has to use their Test Console and mark a query as

“irrelevant”. The other way could be exporting the Skill configuration as a

JSON file, provide these Examples under the “counterexamples” attribute,

and import the same.

• Fulfilments: Watson Assistant provides multiple options to define Fulfilment

Logic. It provides a tree-like structure called the Dialog Tree, where Fulfil-

ments can either be defined inline or, calls can be made to IBM Cloud Func-

tions [81]. Calls to an external Fulfilment webhook can also be configured.

Watson Assistant’s Dialog Tree allows more business logic to be added to pro-



4.3 Pattern Examples 103

cess any pre-conditions before or post-conditions after the Fulfilment Logic is

executed.

4.3.3 Lex

• Intents: Each Intent is defined in the dashboard on a separate page. Typical

information provided on the definition page is Intent’s name and some “Sample

utterances”. If the Intent has any associated Slots, the same needs to be

configured on this page itself. Prompts can be configured for one or more

Slots on the same page. Lex provides a set of common Intents which can

be added to any chatbot, albeit, these Intents are more useful for chatbots

that work over audio content (some of the examples of built-in Intents are the

PauseIntent, ShuffleOnIntent, LoopOffIntent etc.). Lex does not provide

any Welcome or Fallback Intents, although there is a section for configuring

“Error Handling”, which is loosely the same as a default Intent.

• Entities: Entities cannot be defined separately in the dashboard. In Lex,

Entities are called “Slot Types”. Slot Types cannot exist independently unless

they are associated with some Intent. However, an already defined Slot Type

can be reused in another Intent. For each Slot Type, a set of possible values

are defined. For each value, synonyms can be defined. Every time a change is

made to a Slot Type, it is saved as a new version. Different Intents can use

different versions of the same Slot Type.

• Examples: Examples are called “User utterances” in Lex. They are provided

directly on the definition page of the associated Intent. Lex expects that

positions of any Entities in an Example are explicitly mentioned, to help the

Slot Filling task. Lex only asks the position of the Entity in the Example and

not the value. There is no mechanism in Lex to provide Negative Examples.

• Fulfilments: Fulfilments can be defined in two different ways in Lex. For

Intents, where the response is fixed, the response, along with placeholders for

Parameters, can be directly supplied on the Intent definition page. For Intents

requiring complex Fulfilment Logic, Lex allows configuring an AWS Lambda

Function [82] where the Fulfilment Logic can be implemented in a serverless



104 Contextual Reactive Pattern

environment. For such Intents, the chatbot invokes the configured Lambda

Function with standard input and expects a standard output from which the

response is relayed back to the user.

Appendix C provides a comparison between the three platforms in terms of their

alignment with the Contextual Reactive pattern.

4.4 Case Study

As an example, we show how a chatbot can be built with a platform using the

Contextual Reactive pattern. Consider a fictitious airline called Chanakya Airlines.

Assume that they operate a limited number of flights daily between a few cities1.

The airline already has a website through which users can perform basic business op-

erations such as searching for an appropriate flight, booking a ticket and cancelling

a booked ticket. The airline, in an attempt to provide better user experience, wishes

to deploy a chatbot on their website, which can help users perform the same op-

erations through a conversational interface. After a few sprint planning meetings,

it was decided that the chatbot will be built using the Dialogflow [27] platform. A

set of user stories were also finalised. The operations team of the airlines are open

to sharing a REST endpoint with the chatbot developer, which can be invoked to

perform the business operations. The endpoint takes a JSON object as input and

returns another JSON object as the response after the execution of the operation.

4.4.1 User Stories

The chatbot developer has to implement certain user stories in the priority of their

business importance. The user stories, in decreasing order of their priority, are

as follows (the format used to express these stories is loosely based on the format

discussed by Mike Cohn [203]):

1For the demo, we picked only three cities - Delhi, Mumbai and Bengaluru



4.4 Case Study 105

1. Search for a flight

• Description:

As a customer of Chanakya Airlines, I want to search for a flight between

two cities on a particular date.

• Example:

As a customer of Chanakya Airlines, I want to know about all the flights,

if there are any, between Delhi and Mumbai on coming Friday.

• Conditions of Satisfaction:

(a) The user shall be prompted to supply a source, a destination and a

date.

(b) A list of applicable flights (if any) shall be shown.

(c) Nice to have - show only day or night flights (as per user’s preference).

2. Book tickets on a flight

• Description:

As a customer of Chanakya Airlines, I want to book one or more tickets

on a particular flight for a particular date.

• Example:

As a customer of Chanakya Airlines, I want to book a ticket on the flight

EX-101 for tomorrow.

• Conditions of Satisfaction:

(a) The user shall be prompted to supply an email and the date of book-

ing.

(b) On success, the user shall be given a Booking Id for future reference.

(c) Nice to have - multiple tickets could be booked in a single booking

(if the user wishes to book more than one ticket on the same flight

on the same date).

3. Show previously made bookings

• Description:

As a customer of Chanakya Airlines, I want to find out all the previous

bookings I made with Chanakya Airlines (that are not cancelled).



106 Contextual Reactive Pattern

• Example:

As a customer of Chanakya Airline, I want to know the details (such as

Flight Number, Source, Destination, etc.) of my previous bookings.

• Conditions of Satisfaction:

(a) The user shall be prompted to supply the email used for the bookings.

(b) A list of all bookings (if any) made with the email (that are not

cancelled) shall be shown.

(c) Nice to have - show bookings for a particular travel date only (as per

user’s request).

4. Cancel a booking

• Description:

As a customer of Chanakya Airlines, I want to cancel a previous booking

made with Chanakya Airlines.

• Example:

As a customer of Chanakya Airlines, I want to cancel a booking with

Booking Id 1001.

• Conditions of Satisfaction:

(a) The user shall be prompted to supply a Booking Id and the email

used for making the booking.

(b) On success, the user shall be informed about the cancellation, and

the booking details must be removed from the bookings database.

4.4.2 The First Sprint

In the first sprint, the chatbot developer picks the top two user stories to imple-

ment. In addition, the developer has decided to achieve only the core conditions of

satisfaction - keeping the Nice to have aspects for the second sprint. The chatbot

developer maps the user stories to the following elements on Dialogflow:

• Intents:

– The search Intent caters to inquiries about flights.



4.4 Case Study 107

– The book Intent handles requests for booking flight tickets.

– The others Intent handles requests related to user stories to be handled

in the next sprint(s).

– Dialogflow provides a Default Welcome Intent and a Default Fallback

Intent automatically. The former can cater to mundane greeting queries

(e.g. Hi or Hello), whereas the latter produces a response to cater

to queries that may be “irrelevant” for the chatbot (e.g. How’s the

weather today?).

• Entities:

– The FlightNumber Entity is a regex Entity, which can take values in the

form EX-ddd , where d represents a digit. It represents the flight number

of a particular Chanakya Airlines flight.

– The Source Entity is a system1 Entity which can take a value of any ma-

jor city such as Delhi or Mumbai. It represents the origin of a particular

Chanakya Airlines flight.

– The Destination Entity is another system Entity similar to the Source

Entity and can take a value of any major city. It represents the destina-

tion of a particular Chanakya Airlines flight.

– The Date Entity is a system Entity which can take a value of valid date.

Dialogflow also maps relative utterances such as tomorrow or yesterday

to a date string in ISO 8601 format [204], e.g. 2020-05-01T12:00:00+05:30

(representing 1st May 2020 in Indian Standard Time). It represents the

date of departure of a particular Chanakya Airlines flight.

– The Email Entity is a system Entity which can take a value of a valid

email address. It represents the email used to make a booking with

Chanakya Airlines.

1Dialogflow provides predefined system entities to capture cities, dates, emails, numbers etc.



108 Contextual Reactive Pattern

• Slots:

– For search Intent:

Entity Parameter Name Required
Source src 3

Destination dest 3

Date date 3

– For book Intent:

Entity Parameter Name Required
FlightNumber flightNumber 3

Date date 3

Email email 3

For each required slot, a set of prompts were also provided. For example, if

the email for the booking is not supplied, the chatbot may respond with:

Please provide the email to use for the booking...

• Fulfilments:

The fulfilment logic is available externally. A REST endpoint is invoked with

different inputs to execute different business operations. Sample inputs for the

two Intents are as follows1:

– For search Intent:

1The response received from the REST API looked like: { "fulfillmentText":response }



4.4 Case Study 109

– For book Intent:

For the others Intent, some static responses are configured, meaning if the

others Intent is triggered, the chatbot may respond with a response like:

We request you to connect to our Customer Care

for assisting you with this issue ...

• Examples:

A set of examples for both search and book Intents were provided:

– For search Intent:



110 Contextual Reactive Pattern

– For book Intent:

– For others Intent:

We refer to the deliverable built after the first sprint as Chanakya-Airlines-Bot-v1.



4.4 Case Study 111

4.4.3 The Second Sprint

The second sprint involved adding functionality to the chatbot built in the first

sprint and improving it by adding the Nice to have features. The main agenda of

the second sprint is summarised as follows:

1. Implement the two remaining user stories and remove the others Intent cre-

ated to handle queries related to them.

2. Implement the Nice to have features related to each user story.

Thus, the second sprint showcases two major tasks. First, it upgrades the existing

Intents to cater to more complex scenarios. Second, it adds more Intents to upgrade

the overall capability of the chatbot. Both these tasks help us showcase how flexible

the pattern is towards rapidly changing chatbots.

We only discuss the details that were added in the second sprint:

• Intents:

– The show Intent caters to inquiries about existing bookings (those that

were not cancelled).

– The cancel Intent handles requests for cancelling existing bookings.

The others Intent is no longer required, since we now have Intents related to

all user stories. Thus, it is removed in the second sprint.

• Entities:

– The Time Entity is a nominal entity, which can take two values - “day” or

“night”. We define a few synonyms for both values, such as “morning”

for “day” and “late”1 for “night”.

– The NumberOfTickets Entity is a system entity that can take any integer

as value. It represents the number of tickets to book as part of a single

booking.

– The BookingId Entity is a system entity that can take any integer as

value. It represents the Booking Id for a particular Chanakya Airlines

booking.
1The synonyms are contextual - e.g. “night flight” and “late flight” mean the same here



112 Contextual Reactive Pattern

• Slots:

The slots added to existing Intents in this sprint are shown differently :

– For search Intent:

Entity Parameter Name Required
Source src 3

Destination dest 3

Date date 3

Time time 7

– For book Intent:

Entity Parameter Name Required
FlightNumber flightNumber 3

Date date 3

Email email 3

NumberOfTickets numberOfTickets 7

– For show Intent:

Entity Parameter Name Required
Email email 3

Date date 7

– For cancel Intent:

Entity Parameter Name Required
Email email 3

BookingId bookingId 3

• Fulfilments:

Sample inputs for the two new intents are shown as follows:



4.4 Case Study 113

– For show Intent:

– For cancel Intent:

• Examples:

The set of examples for both show and cancel intents are shown below:

– For show Intent:



114 Contextual Reactive Pattern

– For cancel Intent:

For both sprints, the coloured examples, show tagged values of Entities in user

utterances. An example of values are tagged in Dialogflow is shown below:

We refer to the deliverable built after the first sprint as Chanakya-Airlines-Bot-v2.

4.4.4 Comparison of Sprint Deliverables

Figure 4.6 and 4.7 show screenshots of the two versions of the Chanakya Airlines

chatbot. The screenshots show the response of the two versions of the chatbot, on

providing the same user queries.

In particular, the differences are on two fronts:



4.4 Case Study 115

(a) Handling the queries related to the show Intent

(b) Handling the queries related to the cancel Intent

Figure 4.6: Chanakya Airlines Chatbot: Handling use cases of future iterations



116 Contextual Reactive Pattern

(a) Flights filtered on the basis of user’s preference (day or night)

(b) More than one ticket can be booked as part of the same booking

Figure 4.7: Chanakya Airlines Chatbot: Updating implemented use cases



4.5 Consequences 117

1. Handling use cases of future iterations:

The others Intent acts as a graceful handler for user stories that are not

handled in the first sprint. It is meant to handle queries of both, show (Figure

4.6(a)) as well as cancel (Figure 4.6(b) Intents.

2. Updating existing use cases:

Adding new features to existing Intents involve adding, removing or modifying

Slot details, and providing more Examples, if required, to cover the set of

queries that should be associated with the Intent. Figure 4.7(a) shows the

updated search Intent, while Figure 4.7(b) shows the updated book Intent.

The configuration files for creating the Chanakya Airlines chatbot on the Di-

alogflow platform is available at [205]. The code that imitates the backend oper-

ations of Chanakya Airlines can be found at [206]. Both repositories are licensed

under the MIT license [207].

4.5 Consequences

The Consequences section of a pattern discusses the outcomes of applying the pat-

tern over the problem. In particular, it discusses the benefits of applying the pattern

(say over any other possible solutions) as well as any limitations that cannot be mit-

igated by (or introduced by) its application.

• Benefits:

1. The others Intent can cover a large number of user stories in initial it-

erations, and its role in the chatbot operation decreases as new Intents

are added in future iterations. The default Intent can provide graceful

responses to cover imperfections in NLP tasks.

2. The chatbot-building platform requires only a limited number of real-

world examples to train its models, and can extrapolate in multiple di-

rections as required.

3. The logic associated with business operations can be executed as part

of the processing pipeline. The details of the logic are abstracted and

decoupled from the core NLP tasks performed by the chatbot.



118 Contextual Reactive Pattern

• Liabilities:

1. The chatbot associates each query with one and only one Intent. A

complex query which can be associated with more than one Intent cannot

be handled.

2. The chatbot supplies the inputs to the processing pipeline and expects the

response in a platform-specific format. It may require creating wrappers

over existing cloud functions or REST API endpoints.

4.6 Summary

In this chapter, we provided insight into using chatbot-building platforms for cre-

ating chatbots. We aimed at coupling the development with common project con-

straints, such as multiple-iteration deliveries and fast-changing use cases.

We presented the Contextual Reactive pattern for defining chatbots. The pattern

is used with some variations on most of the CaaS platforms. The idea is to define

the chatbot in terms of Intents, Entities, Examples and Fulfilments.

• Intents group together queries of the same type.

• Entities are instances of real-world data that appear in conversations with a

user.

• Examples are sample utterances that a user may say while interacting with

the chatbot.

• Fulfilments are processing pipelines, which process a user query, and prepare

a response to be relayed back to the user.

To handle the “uncertainty” associated with NLP tasks, two special Intents, the

others Intent and the default Intent can be useful. The default Intent is used to

trap queries that are “irrelevant” for a chatbot, i.e. the chatbot does not have an

Intent which can cater to these queries. The others Intent can be configured to cater

to any queries that are relevant for the chatbot but are not yet served (but maybe

served in future iterations).



4.6 Summary 119

We then presented the form in which the pattern can be seen on three chatbot-

building platforms - Google Dialogflow, IBM Watson Assistant and Amazon Lex.

We also discussed a detailed case study of building a chatbot with the help of a

chatbot-building platform, over two iterations. The code and configuration for the

case study are available under the MIT license.



120 Contextual Reactive Pattern



Chapter 5

Intent Sets

Chapter 2 was dedicated to introducing core elements of a chatbot, and its Con-

taining system. In Chapter 3, we discussed the chatbot-building platforms in detail.

We then described, in Chapter 4, the overall process of mapping a chatbot’s use

cases to a particular format, through which they can be expressed on a platform. In

this chapter, we focus on another design choice related to building a chatbot, over

a platform. We present the concept of Intent Sets. When a chatbot is defined on

a platform, the developer essentially defines it using an Intent Set. This definition,

however, is not unique in many cases. In other words, the same set of use cases

can be defined in more than one way on a platform. Each of these ways, essentially

represent an Intent Set for the problem at hand. Particularly, this chapter provides

answers to the following two questions:

• Is the process of mapping a chatbot’s use cases into the Contextual Reactive

definition pattern unique? In other words, can the same set of chatbot use

cases be mapped in two or more ways on a chatbot-building platform?

• If there are more than one ways to do so, are these options equivalent to each

other, or do they affect the built chatbot significantly?

This chapter is organised as follows; We first present the concept of Intent Sets

in Section 5.1. We then discuss the case study of a sample chatbot in Section 5.2, to

show the difference between two Intent Sets. Section 5.3 discusses our observations

related to a set of experiments conducted over the sample chatbot discussed in



122 Intent Sets

Model Manufacturer Price Available Colours
6i Realme 175.58 White, Green, Blue

Galaxy M21 Samsung 222.40 Blue, Black
iPhone 11 Apple 672.58 Black, Green, Yellow, Purple, Red,

White
A6 Plus Samsung 219.99 Black, Gold, Blue, Lavender
Redmi 9 Xiaomi 119 Grey, Purple, Green, Pink/Blue

C15 Realme 169.99 Blue, Silver
S20 Samsung 679.99 Grey, Blue, Pink, White, Red

iPhone X Apple 437.98 Grey, Silver

Table 5.1: An Example Table containing data related to phones in an inventory

Section 5.2. Section 5.4 presents some related works which can be pursued for

further reading. Finally, we summarise the chapter in Section 5.5.

5.1 Intent Sets

As discussed in Chapter 4, the use cases that a chatbot has to serve, must be mapped

to elements of a specific definition pattern, called the Contextual Reactive Pattern.

Figure 4.1 shows an overview of the definition process. The process shown in the

figure expects the developer to come up with a “set of Intentions”, which are roughly

mapped to an Intent each on the platform. However, in general, this step of dividing

the user queries into a set of Intents is not unique.

As an example, consider some data shown in Table 5.1. Assume that a chatbot

is to be built to answer queries about the data shown in the table. We call it the

phoneBot. What could be the Intents that could cover this scenario? For doing so,

we should first collect a set of user utterances, that the chatbot may receive, e.g.

1. Do you have any phones for less than two hundred dollars?

2. Show me all the blue phones you have...

3. What Samsung phone do you have in stock right now?

The example queries, when seen in isolation, hint towards different directions

to create Intents for the chatbot. Table 5.2 shows these hints and a possible set of



5.1 Intent Sets 123

Query# Hint Possible Intents
1 “less than two hundred” sub-200-query, upto-300-query,

upto-500-query, beyond-500-query
2 “blue” white-query, black-query,

blue-query, other-colour-query
3 “Samsung” apple-query, realme-query,

xiaomi-query, samsung-query

Table 5.2: Possible Intents for the phoneBot

Intents that can be formulated with them.

For example, the query containing the phrase “less than two hundred” hints

that the user may like to know about phones in specific price ranges. This can be

done easily if the queries are classified into different intentions, based on the price

range. One possible way is to create the Intents are shown in the Possible Intents

column of the table. While it may be tempting to create the Intents based on the

Price column, providing examples for training the chatbot may become tricky. For

instance, there are theoretically, infinite number of (or even practically, a lot of)

possible values that a user may put in her query when it comes to Price. It is,

therefore, better to use Price as a Parameter, which can be instantiated as a Slot

for some Intent, where it can take any numeric value as a legal input from the user.

Another possibility for creating Intents is given by the hint “blue”. This query

highlights the importance of the Color column in data. Thus, Intents can be de-

signed to classify a query based on the user’s choice of colour as well. While it is

undoubtedly feasible to note down all the colours with which we have a phone, since

Manufacturers often launch new colours, it may mean continuously adding more

Intents. Another option could be creating Intents for popular colours, such as blue

or black, and create an Intent for classifying queries of all other colours.

Compared to the other two options, the third query hints towards a more prac-

tical choice - the Manufacturer. Categorising queries based on the Manufacturer

seems better than categorising them based on Price or Colour. First, Manufacturer

is a nominal attribute, i.e. unlike Price, it only has a small set of fixed possible val-

ues. Second, since new Manufacturers do not enter markets fairly regularly, adding

or removing Intents may not have to be done regularly.

The example we chose is relatively simple. Here, the background processing



124 Intent Sets

Intent Seta Intent Setb
Intents 1. apple-query

2. realme-query
3. xiaomi-query
4. samsung-query
5. any-other-query

Intents 1. white-query
2. black-query
3. blue-query
4. other-colours-query
4. any-other-query

Entities 1. Phone-Colour
2. Phone-Price-Min
3. Phone-Price-Max

Entities 1. Phone-Manufacturer
2. Phone-Price-Min
3. Phone-Price-Max

Table 5.3: Two possible Intent Sets for phoneBot

required to answer a query is limited to doing a lookup in a table and using the

result to craft a response. A chatbot which performs such a task is a type of

Information Retrieval (IR) chatbot. We will present a case study of an IR chatbot

in detail, in Section 5.2.

IR chatbots provide an intuitive understanding of the choices that a developer

has when it comes to picking Intents for a chatbot. However, these choices are a

part of every chatbot project, i.e. all the queries that a chatbot may encounter must

be classified under some Intent. The set of Intents, thus, collectively cover all the

use cases that a chatbot has to serve.

We can now provide a semi-formal definition for Intent Sets as:

An Intent Set is a collection of Intents and their associated Entities,

which can collectively cover all possible queries that a chatbot may encounter.

An Intent Set, thus, is a collection of Intents and Entities, which can together cover

all possible queries that can be fired at the chatbot. From the outset, it may seem

a challenging task to come up with these sets. However, as discussed in Chapter 4,

it is possible to define a chatbot through multiple iterations (with the help of an

others Intent).

For example, two possible Intent Sets for the phoneBot are shown in Table 5.3.

Intent Seta classifies the queries into different sets based on the Manufacturer of the

phones. If the user asks a query that doesn’t mention any Manufacturer, the query

is categorised in the set any-other-query. Any “additional” information that the

user provides, such as a particular colour or price range of the phone, are captured



5.1 Intent Sets 125

through Entities (which are instantiated as Slots with all the Intents). Intent Setb

classifies the queries into different sets based on the colour of the phone. Similar to

Intent Seta, if the user does not mention any colour in the query, it is categorised in

the set any-other-query.

5.1.1 Properties of Intent Sets

We now list some properties of Intent Sets:

• If the platform maps every query to the correct Intent, and parses all the Slot

values correctly, then the response produced by any Intent Set for a given query

is the same.

The response produced by a chatbot depends on the processing pipeline. If the

correct pipeline is invoked, with correct parameter values, the output should

be correct as well. For the phoneBot, if we can correctly determine the choice

of Colour, Manufacturer and Price Range from the user query, the response

should also be correct (provided that the process which selects data from Table

5.1 does not have any bugs). However, the real challenge and “uncertainty”

aspect that is added to a chatbot’s operation is due to the imperfection in

recognising the correct processing pipeline for a given query. In other words, if

the chatbot makes a mistake in identifying the associated Intent with a query,

or fails to extract correct values for some Slots, the response will be incorrect

as well.

• An Intent Set divides the real-world into a finite number of disjoint scenarios,

the union of which, constitutes all possibilities that the chatbot can handle.

Intent Sets essentially partition the set of possible queries that a chatbot can

receive, into disjoint sets. As discussed in Section 4.5, a limitation of the

Contextual Reactive pattern is that it cannot handle queries belonging to

multiple Intents. Intent Sets have the same limitation. Every possible query

can only be part of one of the disjoint sets. There are no general rules-of-thumb

to guide the process of picking one Intent Set over another. The decision could

be affected by factors which are external to a chatbot. Take the example of

phoneBot, if the products of different Manufacturers require making calls to



126 Intent Sets

different API endpoints, it may be better to categorise the queries based on

Manufacturers, as compared to Colour or Price.

Besides, there are two more properties, specific to Intent Sets for IR chatbots:

• Only nominal attributes can be used to create Intent Sets.

This is rather straightforward. Only an attribute that can take a fixed num-

ber of possible values can be used to create finite disjoint partitions of the

data. If required, non-nominal attributes can be grouped into categories, by

defining ranges. For example, for phoneBot, the Price attribute may be used

for creating Intents, by defining ranges similar to those shown in Table 5.2.

However, platforms usually provide better support modelling such attributes

as Entities.

• The queries that the chatbot can handle must be atomic with respect to the

values for the attribute used to create the Intent Set.

A common way to process an IR query over tabular data is to create a Rela-

tional Algebra (RA) expression [208]. The σ conditions for the query are de-

rived from the Intent with which the query was associated (e.g. Manufacturer

= ’Samsung’) as well as the values of other Slots (e.g. Color = ’blue’ ∧
Price < 200). Since the chatbot associates any query with one and only

defined Intent, the σ condition can have only one expression related to the

attribute which was used for creating Intents. For instance, if Intent Seta is

used for phoneBot, the RA expression cannot contain two values for the Man-

ufacturer attribute. Formally, if the RA expression that fetches the data looks

like:

Π(A1, A2, A3 ...) σ(Ai = x ∧ Aj = y ∧ Ak = z ...)

and, the Intent Set was created by using possible values for attribute Ai, then

one and only one condition involving Ai could be part of the RA expression,

meaning that the query can select rows with a single value of Ai only.



5.2 Case Study 127

5.2 Case Study

The concept of Intent Set can be explained fairly easily. An Intent Set is a medium

of definition for a chatbot over a platform. For the same chatbot, there may be

more ways than one, to provide these definitions, and hence, there is a design choice

involved in the process. However, to provide a more convincing proof of how this

choice can affect the built chatbot, we performed a set of experiments. We picked a

set of sample use cases to build and defined the chatbot using two different Intent

Sets, on three different platforms. The sample chatbot we built is an IR chatbot

about the game of Cricket that provides information from two data sources. First,

there is a collection of explanatory text, which answers questions related to the

rules and format of the game. Second, a table containing data about extraordinary

individual performances in the game.

IR chatbots are good candidates to perform such experiments because of three

reasons. First, the background processing for IR chatbots is usually not too com-

plicated. It requires generating an RA expression or an equivalent statement in a

querying language like the Structured Query Language (SQL) [209]. It allows using

the same processing pipeline for the Intents with minor customisation. This means

that the same Fulfilment endpoint can be used for all the Intents. Second, it is easier

to come up with multiple Intent Sets for IR chatbots, by merely picking any nominal

attribute from the dataset, and creating Intents for each possible value. The other

attributes can then be added as Slots to these Intents. Since we needed at least two

Intent Sets for the same example chatbot to perform the experiments, an IR chatbot

seemed the right choice. Third, the performance of IR chatbots can be quantita-

tively analysed with relative ease. It can be done by inspecting the response of the

chatbot over a carefully crafted set of queries. Since the queries seek specific data

from the background sources, the response can be objectively evaluated as “correct”

or “incorrect”. We can also define certain responses as “partially correct”.

The chatbot we built is named Cricket Novice. As mentioned before, it is sup-

posed to answer queries related to the game of Cricket. Figure 5.1 shows a few

query-response pairs for Cricket Novice. The two use cases for Cricket Novice are:

• Answer basic queries about the game of Cricket. This includes questions like

“How is Cricket played?”, “How many players are there in a team?”,



128 Intent Sets

(a) Answering descriptive queries (b) Answering statistical queries

Figure 5.1: Sample Conversations with Cricket Novice

“What are the formats in which Cricket is played?” and so on. The

answers to these queries are static pieces of text, explaining the queried concept

or regulation. From here on, we call such queries as descriptive queries, since

they need a descriptive response. Figure 5.1(a) shows a sample conversation

with Cricket Novice where the user asks a descriptive query.

• Answer queries related to individual performances in International Cricket

matches. This includes questions like “Which batsman has scored the maximum

number of runs in Test matches?” and “Which bowler has taken highest

number of wickets in ODI matches?”. The answers to these queries are dy-

namically generated based on the information that is of interest to the user.

From here on, we call these queries statistical queries, since the response is

based on some statistics. Figure 5.1(b) shows a sample conversation with

Cricket Novice where the user asks two statistical queries.



5.2 Case Study 129

The	International	Cricket	Council(ICC)	approves	three	types	of	Cricket	matches:
1.	Test	Matches	-	Played	over	5	days,	with	both	teams	getting	two	innings	to	play,	with	no
restriction	on	the	number	of	overs.
2.	One	Day	Internationals	-	Played	over	a	single	day,	with	each	team	getting	a	maximum	of	50
Overs	to	bat.
3.	Twenty20	Internationals	-	Played	over	a	single	day,	with	each	team	getting	a	maximum	of	20
Overs	to	bat.
The	last	two	types	are	also	called	limited	over	games	colloquially.

The	objective	of	the	game	of	Cricket	is	to	score	more	runs	than	the	opposite	team	and/or
dismiss	all	their	batsmen.
In	matches	with	limited	overs,	at	the	end	of	the	match,	the	team	that	scored	more	runs	is
declared	the	winner.	If	the	team	batting	second	was	the	winner,	the	victory	is	declared	by
wickets.	The	margin	of	victory	is	10	minus	the	number	of	batsmen	the	opposite	team	could
dismiss	over	the	innings.
If	the	team	batting	first	was	the	winner,	the	victory	is	declared	by	runs.	The	margin	of	the
victory	is	difference	between	the	number	of	runs	scored	by	the	two	teams.	If	the	runs	scored
at	the	completion	of	the	match	by	both	teams	are	equal,	the	match	is	declared	to	be	a	tie.	
In	Test	Matches	(with	unlimited	overs),	the	team	batting	last	wins	if	their	sum	of	the	scored
runs	across	both	innings	is	more	than	the	sum	of	the	scored	runs	of	both	innings	by	the
opposition.	The	other	team	is	declared	the	winner	if	all	the	batsmen	of	the	team	batting	last
are	dismissed	with	the	sum	of	scores	of	the	two	teams	across	the	two	innings	not	being	equal
to	each	other.	In	case	neither	of	the	cases	hold,	the	match	is	declared	a	tie,	if	all	the
innings	in	the	match	were	completed	and	the	sum	of	the	scores	of	both	teams	over	both	innings
are	equal.	The	match	is	declared	to	be	a	draw	if	none	of	the	above	three	cases	apply.	A	draw
can	also	be	seen	as	a	case	where	the	allotted	5	days	of	time	for	the	match	was	not	enough	to
complete	all	the	innings.	In	case	of	a	result,	the	margins	are	decided	in	a	way	similar	to
that	for	the	limited	overs	matches.

An	innings	is	the	collective	batting	effort	of	a	team.	It	comes	to	an	end	when	10	out	of	the
11	batsmen	from	the	batting	team	were	adjudged	out	(dismissed).	In	matches	with	limited	overs,
an	innings	is	also	considered	to	be	completed,	if	the	maximum	number	of	overs	allotted	were
completed.	In	Test	matches,	an	innings	can	be	considered	to	be	completed,	if	there	is	no	more
time	left	for	the	play.
In	addition,	the	captain	of	the	batting	team	can	declare	the	completion	of	their	innings,	any
time	before	the	above	events. ...

Figure 5.2: Snapshot of a document containing some basic information about the
game of Cricket. Each paragraph can be read independently as a different document.

5.2.1 Experimental Setup

To study the impact of using a particular Intent Set on a chatbot’s responses, we

created a set of Intents to cater to selected descriptive queries, and another set of In-

tents, to answer statistical questions. We built multiple versions of the chatbot, and

subjected them to a common, standardised set of user queries. We then compared

the accuracy of these chatbots to understand the changes in their behaviour.

We now explain the experimental setup for the case study:

• Descriptive data: We created a document explaining the basics of the game

of Cricket. Each paragraph of the document described some aspect of the

game. A snapshot of the document is shown in Figure 5.2. Different para-

graphs are highlighted differently, meaning that they can be read indepen-



130 Intent Sets

MT SS ST1 ST2 S P T D

test innings highest batting runs Brian Lara West Indies scored 400* runs

odi career highest batting average Ryan ten

Doeschate

Netherlands had an average of 67

odi innings highest batting strike

rate

James

Franklin

New Zealand had a strike rate of 387.5

odi career highest bowling wickets Muttiah

Muralitharan

Sri Lanka took 534 wickets

odi career lowest bowling strike

rate

Rashid Khan Afghanistan bowled 2623 deliveries

test career highest batting average Sir Donald

Bradman

Pakistan had an average of 99.94

t20 innings highest batting strike

rate

Dwayne

Smith

West Indies had a strike rate of 414.28

t20 career highest batting centuries Rohit

Sharma

India scored 4 centuries

t20 career lowest bowling average Rashid Khan Afghanistan has an average of 12.4

t20 career lowest bowling economy

rate

Daniel

Vettori

New Zealand had economy rate of 5.7

test innings best bowling figures Jim Laker England had figures of 51.2-23-10-53

test career highest batting runs Sachin

Tendulkar

India scored 15921 runs

test career highest batting centuries Sachin

Tendulkar

India scored 51 centuries

test career highest batting double

centuries

Sir Donald

Bradman

Australia scored 12 double centuries

. . .

MT - Match Type SS - Stat Span ST1 - Stat Type1 ST2 - Stat Type2
S - Stat P - Player T - Team D - Details

Table 5.4: Some rows from the table c. The Shaded columns are “output” attributes,
used for preparing responses.

dently. There were a total of 25 paragraphs in the document, meaning 25

different descriptive queries could be answered using the document. Each

paragraph acts like a response for one descriptive Intent.

• Statistical data:

We created a table containing some hand-picked data items. The data was

taken from an online Cricket database called Statsguru [210]. We term this

table c. Table 5.4 shows the schema and some sample rows in the table.



5.2 Case Study 131

Intent	Set1 Intent	Set2

Match	Type Stat	Span Stat

runs

batting
average

batting	strike
rate

innings

match

test

odi

Entities

Allowed
Values

SlotsIntents

Match	Type Stat	Span Stat	Type

battinginnings

match

test

odi

strike	rate

economy	rate

figures

✔ ✔ ✔

✔ ✔ ✖

✔ ✔ ✖

Entities

Allowed
Values

SlotsIntents

runs

wickets

average

✔ ✔ ✖

✔ ✖ ✖

✔ ✖ ✔

centuries

double
centuries ✔ ✖ ✖

✔ Slot	Required ✖ Slot	not	required ✖
Slot	not	required	because	of
lack	of	data

centuries

double
centuries
wickets

bowling
average

bowling	strike
rate

economy	rate

figures

careert20

highest

lowest

best

✔ ✔ ✔

✔ ✔ ✔

✔ ✔ ✔

bowling

careert20

✔ ✖ ✖

Figure 5.3: The statistical Intents for Cricket Novice. The descriptive and
default Intents were common in both Intent Sets, and hence, not shown.

The table has a total of 8 attributes. Out of these, 5 attributes are “input”

attributes, i.e. the values for these attributes are provided as input, by parsing

a user query. The rest are “output” attributes, i.e. they are used to prepare

a response for the user query. For our experiments, we assume that each

statistical query attempts to fetch data from at most one row in table c. There

were a total of 35 rows in c.

• Intent Sets:

We used two Intent Sets for defining Cricket Novice. We call them Intent Set1

and Intent Set2. An overview of both the Intent Sets is provided in Figure 5.3.

The Intents that we created to cater to the descriptive queries were common

in both Intent Sets. We created 25 such Intents, each catering to a particular

basic query about Cricket. The idea was to increase the number of Intents to a

significant number so that the chatbot has a realistic problem when performing



132 Intent Sets

Intent Classification (assuming that a typical commercial chatbot may have

dozens of defined Intents). The two Intent Sets differed in the Intents that

were meant to cater to the statistical queries. The Slots for the Intents also

changed accordingly. Since we only had 35 rows in c, it meant that certain

queries, even though valid, were not answerable due to lack of data. The

Slots were created keeping these queries in mind. The Stat Type Entity in

Intent Set2, along with the triggered Intent, uniquely identifies the statistic

that the user wishes to know. The Stat Entity in Intent Set1 is actually a

composite attribute, with respect to c, and provides the same information as

the combination in Intent Set2.

• Training data:

The training data for the chatbot comprised of Examples of how a particular

query could be formulated by the user. For descriptive Intents, we used 3 to 5

alternative formulations for each Intent. The definition of a descriptive Intent

involves providing these formulations, and a static response. For example:

"intent-name":"what-is-innings",

"questions":

[

"What is an innings?",

"What constitutes an innings?",

"How does an innings end?",

"For how long can a team bat?",

"Is there a limit for how many overs a team can bat?"

],

"answer": "An innings is the collective

...

before the above events."

For the statistical Intents, we created three formulations each, for each row in

the table c. These formulations belonged to different Intents in both Intent

Sets, with values for different Slots embedded in them. Table 5.5 and 5.6

provide a glimpse of the training data for the statistical Intents.



5.2 Case Study 133

Intent Match
Type

Stat
Span

Stat Question Alternate 1 Alternate 2

best test match bowling
figures

Who has the
best bowling
figures in Test
matches

Which bowler
has the best
figures in a
Test match

Which player
has the best
bowling figures
in Tests

best odi innings bowling
figures

Who has the
best bowling
figures in ODI
matches

Which bowler
has the best
figures in a One
Day match

Which player
has the best
bowling figures
in One Dayers

highest odi innings batting
strike
rate

Who has the
highest batting
strike rate in
an innings of
an ODI match

Which bats-
man holds the
record for the
highest strike
rate in a One
Day

Who has the
best batting
strike rate in
an innings of
an ODI

highest t20 career batting
strike
rate

Who has the
highest batting
strike rate in
T20 matches

Which bats-
man has the
best strike rate
in Twenty-
Twenty

Who has the
best career bat-
ting strike rate
in 20-20

lowest t20 career bowling
average

Who has the
lowest bowling
average in T20
matches

Which bowler
has the best
average in
Twenty-
Twenty

Which player
has the least
bowling aver-
age in 20-20

lowest test career bowling
strike
rate

Who has the
lowest bowling
strike rate in
Test matches

Which bowler
has the best
strike rate in
Tests

Which player
has the least
bowling strike
rate in Test
cricket

. . .

Table 5.5: A part of training data for the statistical Intents in Intent Set1



134 Intent Sets

Intent Match
Type

Stat
Span

Stat
Type

Question Alternate 1 Alternate 2

average test career batting Who has the
highest bat-
ting average in
Test matches

Which player
holds the
record for the
best batting
average in
Test cricket

Which bats-
man has the
best average
in Tests

centuries odi career batting Who has
scored the
highest num-
ber of cen-
turies in ODI
matches

Which player
holds the
record maxi-
mum centuries
in One Day
cricket

Which bats-
man has most
centuries in
ODIs

economy
rate

t20 career bowling Who has the
lowest econ-
omy rate in
T20 matches

Who has the
best career
economy rate
in Twenty-
Twenty

Which bowler
holds the
record for the
least career
economy rate
in 20-20

figures t20 innings bowling Who has the
best bowling
figures in T20
matches

Which bowler
has the best
figures in
a Twenty-
Twenty match

Which player
has the best
bowling fig-
ures in 20-20

strike
rate

odi innings batting Who has the
highest bat-
ting strike rate
in an innings
of an ODI
match

Which bats-
man holds the
record for the
highest strike
rate in a One
Day

Who has the
best batting
strike rate in
an innings of
an ODI

wickets test career bowling Who has taken
the highest
number of
wickets in Test
matches

Who is the
highest wicket
taker in Test
matches

Which player
has taken
maximum
wickets in Test
cricket

. . .

Table 5.6: A part of training data for the statistical Intents in Intent Set2



5.2 Case Study 135

In addition, we also used some Negative Examples to teach the chatbot certain

queries, which it should not attempt to answer. Negative Examples are a way

to train the chatbot towards invoking the processing pipeline associated with

the default Intent. We used 10 Negative Examples for our experiments:

1 What is the highest score by any team in One Dayers?

2 What is the lowest total on which a team has been

dismissed?

3 Which side has the best win ratio?

4 Which country has won their inaugural test match?

5 When did India play its first One Day match?

6 How many runs has Brian Lara scored in test cricket?

7 How many wickets does Glenn McGrath have to his name?

8 What is the best bowling figure in One Day cricket for

Kapil Dev?

9 When did Sachin Tendulkar make his international debut?

10 How many times wickets did Shane Warne take while

playing in Australia?

• Platforms:

We built Cricket Novice on three platforms - Dialogflow [27], Watson Assistant

[21] and Lex [28].

5.2.2 Experiments

There were two experiments that we performed over Cricket Novice:

• We performed an Accuracy Experiment to compare the accuracy of the differ-

ent versions of Cricket Novice. These versions were built using the two Intent

Sets, across three platforms, meaning a total of six different versions. For each

version, we evaluated the chatbots in four different phases:

1. In the first phase, we only used one Example each with respect to all the

rows in table c for training the chatbots. In terms of Tables 5.5 and 5.6,

it meant that only the Questions column was used for training.



136 Intent Sets

2. In the second phase, we added one more Example each, with respect to

all the rows in table c towards the training of the chatbots. The total

number of training Examples, thus became 70. In terms of Tables 5.5

and 5.6, it meant that the Questions and Alternate 1 columns were

used for training.

3. In the third phase, we added one more Example each, with respect to

all the rows in table c towards the training of the chatbots. The total

number of training Examples, thus became 105. In terms of Tables 5.5

and 5.6, it meant that all three columns, Questions, Alternate 1 and

Alternate 2 were used for training.

4. In the fourth phase, we added the Negative Examples to the training set.

Negative Examples are added to aid a chatbot’s understanding of “irrel-

evant” queries, increasing the chances of the matching of the default

Intent.

• We also permed an Order Experiment on two out of the three platforms - Wat-

son Assistant and Dialogflow. On these two platforms, the chatbot’s models

are trained implicitly, as soon as there is a minute change in the training data

(across all Intents and Entities). We performed another experiment to check

if the training process is affected by the order in which changes are made to

the training data. To do so, we did the following:

– The second phase mentioned above supplied 70 training Examples to the

chatbot. One way to do so is to add 35 more Examples to phase one, as

mentioned above.

– Another way to reach the same state is to remove 35 Examples from phase

three, essentially leaving the chatbot with the same 70 training Examples.

In other words, we evaluated the response of the chatbot after phase two of

training in two different ways. One, by adding Examples from the previous

phase, and second, by removing Examples from the next phase. Ideally, with

the same training data, the chatbots should behave the same. The Order

Experiment was meant to investigate this.



5.2 Case Study 137

During the experiments, we asked Cricket Novice 20 hand-picked queries, after

each phase. The set of queries, as shown, remained the same across all experiments:

1 Who made the most runs in test cricket?

2 Who has taken maximum wickets in twenty twenty?

3 Which bowler holds the record for best figures in an

innings of a Test match?

4 Which batsman has the best average?

5 Which bowler has the best average?

6 Can you name the player who has the best career average

in ODIs?

7 Can you tell who scored maximum number of centuries

in test cricket?

8 Which player has scored most double centuries?

9 Which batsman has the best strike rate?

10 Which bowler has the best strike rate?

11 I want to know which bowler has the best bowling figures.

12 What’s the highest score by any batsman in ODIs?

13 How many centuries has Sachin scored?

14 How many ways can a batsman get out?

15 In test matches, which batsman has the highest

strike rate?

16 Which bowler has the best economy rate in test matches?

17 Name the player with the best economy rate in an ODI.

18 What’s the name of the guy who took most wickets in tests?

19 What’s the highest team total in One Dayers?

20 What role does a captain play in cricket?

The “correct” answers to these queries were different for different phases. This was

decided on the basis of training data. For example, if there was no possible training

to answer a particular query, the “correct” behaviour was to match the default

Intent. Also, if the required data was not provided as part of the query, the chatbot

was supposed to prompt for the same.



138 Intent Sets

We examined the diagnostic information provided by the Test consoles of the

platforms, to note down the matched Intents and filled Slots for each query. During

the Accuracy Experiment, we compared the responses with the expected responses.

For the descriptive queries, the chatbot’s response could either be termed as failure

or success, depending upon the matched Intent for the query. For the statistical

Intents, we also defined a state of partial success, where the chatbot could match

the query to the correct Intent, but messed up something related to the Slot filling

process. For each phase, we calculated a score based on the response of the chatbot

to the 20 queries. During the Order Experiment, we defined the concepts of match,

mismatch and partial match. We used another piece of diagnostic information

provided by the platforms - Intent Match confidence. This score, a value on a scale of

0 to 1, shows the probability of the query being associated with the matched Intent.

If the behaviour of the two versions matched exactly, i.e. the matched Intent, the

confidence and the Slot filling process, were all the same, we termed it as a match.

If the matched Intent differed, we called it a mismatch. If the matched Intent was

the same, but there was a difference in some other aspect - confidence or Slot filling

- we called it a partial match.

For the Accuracy Experiment, the scores were measured in Utility Scores. The

Utility Score, U, for a phase was calculated as

U =

20∑
i=1

rai, where,

rai =


0, if the ith response is categorised as a failure

1, if the ith response is categorised as a success

0.5, if the ith response is categorised as a partial success

For the Order Experiment, the scores were measured in Dissimilarity Scores.

The Dissimilarity Score, D, between the two versions of phase two was calculated as

D =
1

20

20∑
i=1

rci, where,



5.3 Observations 139

Match	Type

highest

Which	player	holds	the	record	for	highest	batting	strike	rate	in	an	innings	of	a	t20?

Which	player	holds	the	record	for	highest	batting	strike	rate	in	an	innings	of	a	t20? Which	player	holds	the	record	for	highest	batting	strike	rate	in	an	innings	of	a	t20?

Matched	Intent:

Slot	Values: Stat	SpanStat

strike	rateMatched	Intent:

Slot	Values: Stat	Span Match	Type

πP,T,D(σST1='highest'	^	ST2='batting'	^	S='strike	rate'	^	SS='innings'	^	MType='test')

Intent	Style1 Intent	Style2

Fulfilment: if	Stat	contains	'strike	rate'	:
						ST2	=	Stat	contains	'bowling'	?	'bowling'	:	'batting'
						Stat	=	'strike	rate'

πP,T,D(σS='strike	rate'	^	ST2='batting'		^	SS='innings'	^	MType='test')

Stat	Type

|	Dwayne	Smith	|	West	Indies	|	had	a	strike	rate	of	414.28	|
|								Player								|						Team						|																		Details																	|

|	Dwayne	Smith	|	West	Indies	|	had	a	strike	rate	of	414.28	|
|								Player								|						Team						|																		Details																	|

The	answer	to	your	query	is	Dwayne	Smith	from	West	Indies.	He	had	a	strike	rate	of	414.28.

Fulfilment: <<pass	the	parameters	downstream>>

Figure 5.4: A rough sketch of processing of a user query when the two Intent Sets
shown in Figure 5.3 are put in use

rci =


0, if the ith response pair is categorised as a mismatch

1, if the ith response pair is categorised as a match

0.5, if the ith response pair is categorised as a partial match

The overall idea behind conducting these experiments was to find out how picking

different Intent Sets affect the behaviour of the same chatbot. Figure 5.4 provides

a hint towards the background processing that Cricket Novice performs in order to

prepare a response.

5.3 Observations

As mentioned, we conducted two major set of experiments with Cricket Novice. The

Accuracy Experiment and the Order Experiment. We now present some observations

from these experiments.

5.3.1 The Accuracy Experiment

We conducted an Accuracy Experiment on the different versions of Cricket Novice,

across the platforms, as mentioned in Section 5.2.2. Figure 5.5 shows the comparison



140 Intent Sets

1 2 3 4
0
2
4
6
8
10
12
14
16
18
20

Utility Scores for Dialogflow

Phases

U
ti

lit
y 

S
co

re

14.0

17.0 18.0 18.0

5.5

7.0

13.0
12.0

1 2 3 4
0
2
4
6
8
10
12
14
16
18
20

Utility Scores for Watson Assistant

Phases

U
ti

lit
y 

S
co

re

14.0

16.0

14.5 15.0

8.0

16.0

16.5 16.5

1 2 3 4
0
2
4
6
8
10
12
14
16
18
20

Utility Scores for Lex

Phases

U
ti

lit
y 

S
co

re

12.0

16.5 17.0 17.0

8.0
9.5 9.5

11.5

Intent Set Intent Set1 2

Figure 5.5: Utility Scores for Cricket Novice on different platforms



5.3 Observations 141

of the Utility Scores after the four training phases. The maximum Utility Score that

any version could achieve was 20. The following observations can be made by looking

at the data:

1. The first observation, which is expected, is that in general, the accuracy of the

chatbot increased with increase in training data, with the only exception being

the case of Intent Set2 for Watson Assistant, where the chatbot did better in

the second phase as compared to later phases.

2. Even with the same training data, and the same set of probing queries during

the experiment, the accuracy of the chatbots varied widely for Intent Set1, and

moderately for Intent Set2.

3. On Dialogflow and Lex, Intent Set2 performed better in all phases. On Watson

Assistant, except the first phase, Intent Set1 performed better than Intent Set2.

We must point out that these experiments do not mean that either of the Intent

Set is better than the other, or that some platform is a better choice over others. The

only concrete observation here is that different Intent Sets can lead to significantly

different chatbots. The other comment is that different platforms, due to their

different “blackboxed” mechanisms, may do a better job at building a chatbot with

different Intent Sets. It means that the utility of an Intent Set may be relatively

higher or lower, depending upon the platform that is used for building the chatbots.

Also, considering that Intent Set1 had 3 Intents, and Intent Set2 had 8 Intents, it is

inconclusive if defining the chatbot use cases with more Intents is better or worse

than doing so with fewer Intents. It is because we neither of the two Intent Sets

performed better than the other across phases and platforms.

5.3.2 The Order Experiment

The purpose of the Order Experiment was to investigate the impact of providing

the same training Examples for a chatbot, albeit, in a different order. It might not

seem something that a chatbot should be affected with from the outset. However,

some chatbot-building platforms, such as Watson Assistant and Dialogflow, retrain

their NLP models with even a minor change in the Examples. Since the retraining



142 Intent Sets

Intent Set1 Intent Set2
Dialogflow 0.175 0.2

Watson Assistant 0.275 0

Table 5.7: Dissimilarity Scores on Dialogflow and Watson Assistant

is completed within a few seconds, it hints towards the use of some online learning

procedure [54]. As mentioned in Section 5.2.2, we experimented with the chatbots

for the two Intent Sets on Watson Assistant and Dialogflow, to understand if either

one of them was susceptible to the different ordering of Examples.

The Dissimilarity Scores for the four scenarios is shown in Table 5.7. Dissimilarity

score ranges between 0 and 1. The lower the score, the better it is. There is only one

safe observation that can be made from the data - chatbots built on both platforms

are susceptible to a change in Example ordering. There is nothing conclusive about

either Intent Sets being more susceptible to this change over the other.

The detailed results, including the precise response that the chatbots gave for

every query during the experiments, the prompts that were shown and the Intent

Match Confidence are available at a git repository [211] under the MIT license [207].

5.3.3 Discussion

Although the process of creating NLP models for Intent Classification and Parameter

Extraction is blackboxed, the results of the two experiments provide the following

coarse observation about these processes:

1. There seems to be notable differences in the ML models produced on one plat-

form, when compared to another. This can be observed from the Utility scores

of the different platforms for exactly same training data (i.e. for the same In-

tent Set, and the same phase). This opens up an interesting route for further

research - analysing the ML processes in the background, and predicting their

suitability for a particular chatbot use case.

2. The result of the Ordering Experiment hints towards some ML process, which

involves starting with a generalised model, and fine tuning it in small incre-

ments to cater to specific examples. Since it may involve minor changes in

the model being made with minor changes in the training data (instead of a



5.4 Related Work and Future Reading 143

complete retraining after each change, which may be too inefficient), the pos-

sibility of a method similar to BERT [212] seems highly likely, considering its

popularity with NLP researchers [213].

These observations point to the lack of deterministic behaviour that these chatbots

may exhibit for a given use case. This greatly enhances the responsibility of constant

evaluation of the chatbot by testing its response against common user utterances.

It also makes currently chatbots less reliable for critical use cases, and hence require

additional efforts to make them more reliable for practical usage.

5.4 Related Work and Future Reading

The problem of finding Intents within a document containing information has been

studied as a variant of Topic Modelling [214]. The idea of defining Intents by de-

velopers, falls under the category of Supervised Intent creation. There are attempts

to do so from descriptive texts in Unsupervised and Semi-supervised settings as

well (such as [214], [215], [216] and [217]). For structured data such as information

stored in tables or RDF tuples, efforts with limited success have been attempted

(e.g [218], [219], [220] and [221]. They take up the problem in a more abstracted

form - attempting to provide conversational interfaces over structured data. Some

platforms (such as [222] and [223]) also provide services to extract possible Intents

automatically, if they are fed large amount of relevant business data.

For further reading, one can look at some articles which discuss the task of Intent

creation in more detail, and talk about particular issues that a developer may face

in such cases (e.g. the discussions at [224], [225] and [226]). There are some articles

which specifically focus on techniques which can be used for finding Intents in an

Unsupervised setting (e.g. [227] and [228]). One of the most common techniques

used for the purpose is Latent Dirichlet Allocation (LDA) [229]. [230] provides a

survey of LDA, with respect to Topic Modelling. For creating Intents associated

with IR chatbots, the knowledge of Relational Algebra may be helpful. [231] and

[232] provide an overview of the related concepts. The history of Natural Language

interfaces for structured data, such as that stored in an RDBMS can be seen at

[233].



144 Intent Sets

5.5 Summary

This chapter concluded our contributions towards Architectural Issues associated

with Chatbots. We discussed the concept of Intent Sets in this chapter. An Intent

Set is a collection of Intents and Entities which can together cover all possible queries

that a chatbot may receive. We showed that this set might not be unique, in which

case, the developer will have to put a considerable amount of thought before picking

one option over the other.

Intent Sets have two main properties. First, in an “ideal” scenario, i.e. when the

chatbot never makes a mistake while Intent Classification or Parameter Extraction,

it does not matter which Intent Set is chosen to define the chatbot since they are all

equivalent. However, since the modern-day chatbots are still not perfect, different

Intent Sets provide different behaviours. Second, Intent Sets divide the set of queries

that a chatbot may receive, into disjoint sets. It means that every query must be

put in one, and only one of the sets. Each of these sets represents a chatbot Intent.

To show the impact of picking one Intent Set over another, we built a chatbot

called Cricket Novice, which could answer certain basic queries related to the game

of Cricket. We used three platforms - Dialogflow, Watson Assistant and Lex - to

build the chatbot, with two different Intent Sets. Our experiments showed that

the behaviour of the chatbots built with the two Intent Sets differed significantly

from each other, even when the training data provided to both was the same. This

confirmed our hypothesis that picking an Intent Set is a design choice for a chatbot,

which can affect its behaviour significantly.

We also inspected a particular version of the chatbot built over two platforms -

Dialogflow and Watson Assistant - to see if the order in which training Examples

were provided, made any difference to the built chatbot. The results showed that

both platforms’ model building procedure is sensitive to Example ordering.



Chapter 6

Conclusions and Future Work

This chapter provides a brief Conclusion in Section 6.1 for this thesis, and suggest

some future directions for extending the current work in Section 6.2.

6.1 Conclusions

Although Natural Language Processing (NLP) is a field that has seen contributions

for many decades, there are still gaping holes needing to be patched. Despite all these

constraints, chatbots are becoming a popular choice among businesses to interact

with the user. The imperfections in NLP techniques mean that there should be

safety-nets in place. In other words, whenever a chatbot is built, the developers

must have mechanisms to deal with failures. Handing over the control to a human,

or, saying sorry to the user are two common alternatives usually available. This also

means that during the design of the chatbot, the Software Architect may have to

choose between attempting a lot and often failing versus trying something limited,

and doing it better most of the time. It is a choice that needs to be made separately

for each project, depending upon the seriousness of the use cases and the cost of

erring.

The NLP techniques, whatever is their State-of-the-art, are arduous to imple-

ment and maintain. This is why building a chatbot from scratch is a daunting task.

The developers may end up spending more time on perfecting their NLP libraries,

than building the chatbot on top of them. Employing a chatbot-building platform,



146 Conclusions and Future Work

thus, seems a wise idea. They provide most of the basic NLP tasks - such as clas-

sifying user queries into appropriate classes or parsing named entities from phrases

- as “blackboxed” services. However, for some use cases, where sharing data with

another platform is not allowed, the developers are left with no option other than

building the chatbot from scratch.

This thesis work is dedicated towards enriching the body of knowledge related

to chatbots. We start by looking at a chatbot the way we see any other software

component or subsystem. We discussed its major constituents and how they interact

with each other. We also envisioned the chatbot as part of a larger, Containing

system, and discussed its relationship with its environment. Due to the overbearing

load of managing NLP tasks, we argued that using a platform for building a chatbot

is the right direction for most use cases. We, therefore, discussed aspects related to

categorisation and evaluation of these platforms. We also discussed the definition

of use cases on these platforms and the design choices that emerge due to their use.

Throughout the thesis work, we focused on three popular chatbot-building platforms

- Google Dialogflow, IBM Watson Assistant and Amazon Lex, for performing any

case studies to support our intuitions.

A brief discussion of the contributions of this thesis is provided below:

• We presented the major constituents of a typical chatbot as well as its Con-

taining System. We also presented a Reference Architecture for an application

with a conversational interface.

Chapter 2 was dedicated to dissecting a chatbot and showing its significant

elements. Out of all the elements, the most important parts are the Intent

Classifier, which maps a query with a pre-defined intention and the Parameter

Extractor, which parses any named entities in user utterances. In the Contain-

ing system, the most prominent parts for a chatbot are the Fulfilment hooks,

which are used to process a user query in the background, and the front-end

interfaces, which put constraints on what a chatbot can and cannot do. We

also presented case studies over the three platforms mentioned before, to show

the Concrete Architectures of an application with conversational interface,

assuming a platform is used to build the conversational components. These

Concrete Architectures showed the effects of a platform on the architecture of



6.1 Conclusions 147

the Containing system.

• We discussed the chatbot-building platforms in detail. This included a cate-

gorisation based on the commercial offerings, a compiled list of their desirable

features, and application of the Hospitality framework over them.

In Chapter 3, we presented the details of chatbot-building platforms. We

first showed how the platforms can be divided into three categories - NLP-as-

a-Service (NLPaaS), Conversation-as-a-Service (CaaS) and ChatWidget-as-a-

Service (CWaaS). We then presented a list of desired features on the CaaS

platforms that can ease the job of a developer. The Hospitality Framework

was first applied to cloud platforms to compare them from a Quality At-

tributes perspective. We showed how the framework is generic enough to be

re-purposed for evaluating chatbot-building platforms. The case studies pre-

sented in the chapter showed the application of the framework over a simple,

fruit-selling store chatbot, as well as a report on the current support of the

desirable features on the three platforms mentioned before.

• We discussed a pattern used by most chatbot-building platforms to allow the

definition of a chatbot. The pattern called the Contextual Reactive pattern

adds a set of design decisions to the overall process of implementing the chatbot

use cases.

Chapter 4 presented a pattern. Patterns are usually described in a specific

format. They define the problem that they address, enlist the constraints that

must be met, discuss the reasons to pick a particular solution and then describe

the solution in detail. For the Contextual Reactive pattern, the major driving

forces include allowing the development of the chatbot in phases over a period

of time and keeping the defined chatbot decoupled from the business logic it

uses for processing the queries. With the help of a case study - a chatbot for

a fictitious, Chanakya Airlines - we showed how the pattern achieves both of

its major goals.

• We presented the concept of an Intent Set, a critical design choice for building

a chatbot over a platform. We discussed how designing Intent Sets affects the

built chatbot significantly.



148 Conclusions and Future Work

We discuss a particular design choice in Chapter 5, which emerge because of

the use of Contextual Reactive pattern on chatbot-building platforms. Intent

Sets are the means for defining a chatbot on a platform. However, in many

cases, there may be more ways than one, to define a chatbot for the same set of

use cases. In these cases, the developer must spend more time on evaluating

candidate Intent Sets before defining the chatbot. Selecting one Intent Set

instead of another can have a significant impact on the built chatbot. We

present a case study which confirms this hypothesis. The case study involved

using two Intent Sets for building a chatbot, called the Cricket Novice, for

answering the same set of queries related to the game of Cricket. Performed

over the three platforms mentioned above, the case study confirmed significant

variations in the chatbot’s behaviour with a change in Intent Set.

Overall, we can conclude the following from the work presented in this thesis:

1. Whether being built from scratch, or using a platform, understanding the

different constituents of a chatbot, and how it affects the architecture of its

Containing system is crucial. In particular, it must be kept in mind that the

current state-of-the-art in the field of chatbots, still leave a lot of imperfections,

which must be handled appropriately by its Containing system.

2. For most chatbot projects, using a platform at some level of development

seems appropriate. If the chatbot’s use cases are well-defined, and are fairly

common (such as troubleshooting or customer support), CWaaS platforms

may provide a ready-to-use solution, deployable on common mediums such as

Messenger or Slack. For most projects, CaaS platforms provide the right level

of development flexibility (i.e. allowing the developer to implement a wide

range of custom use cases), while providing significant abstractions to hide

the underlying details (i.e. how the core NLP tasks are being performed in

the background). For certain scenarios, using a NLPaaS platform may also be

useful, especially when the chatbot has to cater to complex queries involving

multiple Intents.

3. Different chatbot-building platforms may be better for different projects, how-

ever, there are no rules of thumb to decide upon the best alternative. Our anal-



6.2 Future Work 149

ysis showed that the same Intent Set can provide widely varying results, when

used for defining the chatbot on a different platform. Also, while some of the

core features required for chatbot development are provided by all, there are

features which are not omnipresent. Therefore, it requires a deeper analysis

with all stakeholders in loop, to find the right platform for a given project.

6.2 Future Work

The overall idea of this thesis is to initiate formal work in the field of architectural

knowledge related to chatbots and AI-intensive systems in general. We now present

a few dimensions which may lead to more value addition in that perspective.

1. Extending and updating the Desired Features list with Architectural

Annotations:

The presented list of desired platform features was compiled as a result of the

application of the Hospitality Framework to chatbot-building platforms. It

may be argued that the list, thus, may not cover all the features that may be

desirable for implementing certain chatbot use cases. Also, since the chatbot-

building platforms are still evolving, there may be many more features which

may not have been envisioned yet. The list, thus, is an ongoing effort which

needs to be updated periodically.

Another aspect that may render the list as a more useful architectural tool, is

enriching the features with architectural annotations. The Hospitality frame-

work requires mapping a Quality Attribute to a set of Tactics, which in turn

are mapped to a set of desired features from the platform. It would thus be nice

to re-look the list from a pure Software Architectural perspective, linking each

feature to the support for one or more Quality Attributes or Tactics. It will

help a Software Architect analyse a candidate platform by simply inspecting

the availability of a shorter list of appropriate features.

2. Building a Pattern Language for AI use cases definitions:

The Contextual Reactive pattern is a neat way to provide training data to a

platform for building chatbots. The idea is to define a stimulus, and teach the



150 Conclusions and Future Work

chatbot a response for the same. Chatbots are not the only examples of AI

components. There may be variations of the pattern which are employed on

platforms for building components that perform other AI activities such as Ob-

ject Detection, Speech Transcription and Spam Filtering. A Pattern Language

attempts to capture supplementary and complementary solutions in a small

problem domain. In simple terms, a Pattern Language that contains the Con-

textual Reactive Pattern will probably contain - (i) other definition patterns

that are used on some chatbot-building platform or during the development of

the chatbot from scratch; (ii). any patterns that can be applied before or after

the application of Contextual Reactive Pattern to either mould or modify the

training data. Exploring a possibility to come up with the collection of these

variations could be an interesting challenge.

3. Suggesting Intent Sets for a chatbot:

We have shown how picking one Intent Set over another can affect the accu-

racy of the built chatbot significantly. We also discussed a few properties of

Intent Sets. However, more research is required to understand the relationship

between an Intent Set and the chatbot’s behaviour. Picking an Intent Set is

an important design issue in the chatbot development phase, as it affects the

overall quality of the built chatbot. The fact that Intent Sets are platform-

sensitive, makes this job even harder. The ideal path for this analysis may

involve knowing the details of the “blackboxed” solutions provided by CaaS

platforms, and evaluating the impact of different variations of the same train-

ing data on the underlying model. Assuming that this may not be possible for

these platforms to allow so due to business constraints, the analysis becomes

challenging. It would involve formulating a number of Intent Sets for the same

problem, build different versions of the same chatbot, and analyse their be-

haviour minutely. An overall problem that is worth exploring is coming up

with a methodology or framework to comment upon different Intent Sets for

a chatbot, hence providing design hints for the development.

However, since most of the platforms do not reveal the details of their model-

building process, it is not possible to provide a general analysis framework

to comment on the efficacy of an Intent Set for a given chatbot. However,



6.2 Future Work 151

suppose these platforms initiate individual internal projects. In that case, it

may be possible to suggest the developers one or more “good” Intent Sets,

provided that they are willing to share more business data with them.



152 Conclusions and Future Work



Appendix A

Guide to Privacy Policy Resources

of Selected Platforms

Platform Useful Links for understating Privacy Policy

Watson Assistant Summary:

http://www.sharelatex.com

Detailed:

https://www.ibm.com/watson/assets/

duo/pdf/Watson-Privacy-and-Security-

POV final 062819 tps.pdf

Snatchbot Specific to GDPR:

https://snatchbot.me/gdpr

Detailed:

https://snatchbot.me/privacy

Lex Summary:

https://docs.aws.amazon.com/lex/latest/dg/data-

protection.html

Some more details:

https://aws.amazon.com/lex/faqs/

#Data and Security

continued . . .

http://www.sharelatex.com
https://www.ibm.com/watson/assets/duo/pdf/Watson-Privacy-and-Security-POV_final_062819_tps.pdf
https://www.ibm.com/watson/assets/duo/pdf/Watson-Privacy-and-Security-POV_final_062819_tps.pdf
https://www.ibm.com/watson/assets/duo/pdf/Watson-Privacy-and-Security-POV_final_062819_tps.pdf
https://snatchbot.me/gdpr
https://snatchbot.me/privacy
https://docs.aws.amazon.com/lex/latest/dg/data-protection.html
https://docs.aws.amazon.com/lex/latest/dg/data-protection.html
https://aws.amazon.com/lex/faqs/#Data_and_Security
https://aws.amazon.com/lex/faqs/#Data_and_Security


154 Guide to Privacy Policy Resources of Selected Platforms

. . . continued

Platform Useful Links for understating Privacy Policy

Dialogflow Terms of use:

https://cloud.google.com/dialogflow/docs/data-

logging-terms

Google’s General Privacy Policy:

https://cloud.google.com/dialogflow/docs/data-

logging-terms

Chatbot.com Specific to GDPR:

https://www.chatbot.com/legal/gdpr-faq/

Detailed:

https://www.chatbot.com/legal/privacy-policy/

Azure Bot Service and

LUIS

Specific to GDPR:

https://blog.botframework.com/2018/04/23/

general-data-protection-regulation-gdpr/

Data Storage Details in LUIS:

https://docs.microsoft.com/en-us/azure/

cognitive-services/luis/luis-concept-data-

storage

Microsoft Azure’s General Privacy Policy:

https://azure.microsoft.com/en-in/overview/

trusted-cloud/privacy/

kore.ai Acceptable Use Policy:

https://kore.ai/acceptable-use-policy/

Privacy Policy:

https://kore.ai/privacy-policy/

continued . . .

https://cloud.google.com/dialogflow/docs/data-logging-terms
https://cloud.google.com/dialogflow/docs/data-logging-terms
https://cloud.google.com/dialogflow/docs/data-logging-terms
https://cloud.google.com/dialogflow/docs/data-logging-terms
https://www.chatbot.com/legal/gdpr-faq/
https://www.chatbot.com/legal/privacy-policy/
https://blog.botframework.com/2018/04/23/general-data-protection-regulation-gdpr/
https://blog.botframework.com/2018/04/23/general-data-protection-regulation-gdpr/
https://docs.microsoft.com/en-us/azure/cognitive-services/luis/luis-concept-data-storage
https://docs.microsoft.com/en-us/azure/cognitive-services/luis/luis-concept-data-storage
https://docs.microsoft.com/en-us/azure/cognitive-services/luis/luis-concept-data-storage
https://azure.microsoft.com/en-in/overview/trusted-cloud/privacy/
https://azure.microsoft.com/en-in/overview/trusted-cloud/privacy/
https://kore.ai/acceptable-use-policy/
https://kore.ai/privacy-policy/


155

. . . continued

Platform Useful Links for understating Privacy Policy

Wit.ai Frequently Asked Question: (see answers to “Does Wit

own my data?”, “Do you comply with the GDPR?” and

“Is Wit.ai Privacy Shield certified?”)

https://wit.ai/faq

Terms of Service: (see “Data Processing Addendum”)

https://wit.ai/terms#16

Privacy Policy:

https://wit.ai/privacy

Yellow Messenger Privacy Policy:

https://yellowmessenger.com/privacy-policy

IntelliTricks Data Processing Agreement:

https://www.intelliticks.com/data-processing-

agreement/

Privacy Policy:

https://www.intelliticks.com/privacy-policy/

Drift Specific to GDPR:

https://www.drift.com/gdpr/

Privacy Policy:

https://www.drift.com/privacy-policy/

https://wit.ai/faq
https://wit.ai/terms#16
https://wit.ai/privacy
https://yellowmessenger.com/privacy-policy
https://www.intelliticks.com/data-processing-agreement/
https://www.intelliticks.com/data-processing-agreement/
https://www.intelliticks.com/privacy-policy/
https://www.drift.com/gdpr/
https://www.drift.com/privacy-policy/


156 Guide to Privacy Policy Resources of Selected Platforms



Appendix B

Explanations for Selected Values

in Table 3.12

(A) Lex only expect placeholders instead of actual values, e.g. a training ex-

ample in Lex looks like “Book a ticket from $source to $destination ”,

as compared to say a tagged example in Dialogflow or Watson Assistant,

e.g. “Book a ticket from Delhi:source to Mumbai:destination ”.

(B) In Watson Assistant, although an explicit value cannot be specified, an if

condition in the Dialog Tree can handle it. No direct or indirect mecha-

nism found in Lex for doing the same.

(C) In Watson Assistant, it cannot be done explicitly but can be done by

tagging an example irrelevant in the dashboard or passing it indirectly

by restoring a skill from a JSON file. No direct or indirect mechanism

found in Lex for doing the same.

(D) Applicable to Contextual Entities - Watson Assistant tries to match values

with the context, and there is no way to stop it from adding a new value

to the set of existing, pre-defined values.

continued . . .



158 Explanations for Selected Values in Table 3.12

. . . continued

(E) In Lex, updating a Parameter is not possible directly. The Parameter

must first be added to an Intent, only then can it be edited. The chatbot

developer may find the interface for adding/modifying synonyms confus-

ing. For example, if an entity value had only one synonym, deletion of

the synonym is not allowed in the editing popup. The workaround is to

delete the value itself, and add it again (without any synonym).

(F) Lex does not provide a way to provide a static response straightaway to the

user. A fulfilment step must be completed (either by invoking a Lambda

function or returning the parameters back to the client). Only after the

completion of the fulfilment, can a static response be shown.

(G) Dialogflow allows rich responses for a set of target platforms (e.g. Face-

book Messenger or Slack). A simple image response cannot be sent. It

must be configured differently for different platforms.

(H) In Dialogflow, static placeholders can be added in the response, e.g. “Your

$product has been shipped”, but no mechanism for implementing condi-

tions. In Watson Assistant, simple conditions can be handled using the

conditional (?) operator, while the Dialog Tree can be used for com-

plex use cases. In Lex, a separate Lambda function can be configured

for “initialization and validation”, but no mechanism for implementing

conditions.

(I) In Lex, if the chosen option is “supplied values”, synonyms are ignored.

It might be preferable to get the reference value whenever supplied value

matches the reference value (or provided synonyms) exactly, and get the

supplied value as fallback. In Watson Assistant, the reference value is

provided by default (with expression @entity), whereas the supplied

value can be retrieved by adding the literal property (with expression

@entity.literal). Dialogflow has a similar case. The property for sup-

plied value is original (instead of literal).

continued . . .



159

. . . continued

(J) Dialogflow has a timeout of 5 seconds, whereas Watson Assistant has a

timeout of 8 seconds. Lex can only redirect flow to an external caller,

if this is how the conversation was initiated. The only other option is to

invoke a Lambda function.

(K) Dialogflow allows writing inline fulfilment code, which is deployed as a

Google Cloud Function. Only Node.js can be used for this purpose. Wat-

son Assistant can connect to any IBM Cloud Function, and Lex can con-

nect to any AWS Lambda function, which in turn can be implemented in

any language (some languages are supported natively, while others can be

supported via docker images and runtime APIs).

(L) Dialogflow: Telephony - Dialogflow Phone, Avaya, SignalWire, Voxim-

plant, AudioCodecs, Genesys Cloud; Text based - Web Demo Widger,

Dialogflow Messenger, Facebook Messenger, Slack, Viber, Twitter, Twilio

IP, Twilio SMS, Skype, Telegram, Kik, Line, Cisco Sparc, Amazon Alexa

Watson Assistant: Webchat Widget, Salesforce, Zendesk, Intercom (Pre-

mium Accounts) and Facebook Messenger, Slack, Voice Agent (Telephony)

Lex: Facebook Messenger, Kik, Slack, Twilio SMS

(M)Dialogflow added support for it in the June 13, 2019 release and updated

it in the February 20, 2020 release. Watson Assistant provides support

for creation and modification of skills through only v1 API [234]. The v2

API only provides methods to interact with the assistant. A “workspace”

in v1 API is equivalent to a “skill” in v2 API [235]. Lex provides a well-

documented user guide to access its AWS CLI for Lex related tasks [236].

(N) In Lex, while context variables can be used across Intents, they cannot

be set in the UI. They must be set in the responses sent by Lambda

Functions.

(O) Dialogflow offers many “follow-up Intents” such as Yes, No, Previous,

Next, Cancel etc. Lex provides Intents through the Alexa Skill set (except

Yes and No Intents). Watson Assistant doesn’t provide such features, but

the same can be done via context variables in the Dialog Tree.

continued . . .



160 Explanations for Selected Values in Table 3.12

. . . continued

(P) Watson Assistant provides a dedicated feature to handle digressions. In

Dialogflow, some cases of digressions may be handled through a complex

setting and unsetting of input and output context variables [237]. In Lex,

no specific feature is provided to handle digressions, nor do they advertise

if setting different context variables will change the behaviour of the Intent

matching algorithm.

(Q) The Dialog Tree in Watson Assistant may be able to handle multiple-

intent queries, but getting it right is fairly difficult [160]. Dialogflow and

Lex does not have any visible mechanism to handle multiple-intent queries.



Appendix C

Comparison of the Elements of

Contextual Reactive Pattern

Dialogflow Watson Assistant Lex

In
te

n
ts

1. Intent names can be

anything without space

2. Two Intents are

added automatically -

Welcome and Default

Fallback Intent

1. Intent names must

start with a #

2. Every Intent must be

created or added by the

developer

1. Intent names can be

anything without space

2. Every Intent must be

created or added by the

developer

continued . . .



162 Comparison of the Elements of Contextual Reactive Pattern

. . . continued

Dialogflow Watson Assistant Lex

E
n
ti

ti
e
s

1. Entity names can be

anything without space

2. Details of the pres-

ence of the Entity in

any example cannot be

seen on the definition

page

3. No implicit ver-

sion control

1. Entity names must

start with a @

2. Details of the pres-

ence of the Entity in

any example across In-

tents are shown in an

Annotations tab on the

definition page

3. No implicit version

control

1. Entity names can be

anything without space

2. Details of the pres-

ence of the Entity in

any example cannot be

seen on the definition

page

3. Entities are implic-

itly version controlled

- every time a change

is made to an Entity, a

new version is created

4. Entities are called

“Slot Types” in Lex

S
lo

ts

1. Slots are called

Parameters

2. Slots are defined on

the Intent definition

page

1. Slots are defined in

the Dialog tree

1. Slots are defined

on the Intent definition

page

continued . . .



163

. . . continued

Dialogflow Watson Assistant Lex

E
x
a
m

p
le

s

1. Examples are called

Training Phrases

2. Values associated

with any Entity in

the examples, are ex-

plicitly tagged, e.g.

Search for a flight

tomorrow

↑
journey-date

1. Examples are called

User Examples

2. Values associated

with any Entity in

the examples, are ex-

plicitly tagged, e.g.

Search for a flight

tomorrow

↑
journey-date

1. Examples are called

User Utterances

2. Lex does not expect

actual values of Enti-

ties in the examples,

but a placeholder for

them shall be pro-

vided explicitly, e.g.

Search for a flight

{journey-date}

F
u
lfi

lm
e
n
ts

1. Simple responses can

be configured on the

Intent definition page

2. For invoking ex-

ternal business logic,

a common fulfilment

webhook could be

defined for the chatbot

1. Responses can be

configured in the Dialog

tree for many complex

scenarios

2. Fulfilment logic can

be configured at exter-

nal API endpoints or

IBM Cloud functions

[81]

1. Simple responses can

be configured on the

Intent definition page

2. Fulfilment logic

can be configured as

AWS Lambda functions

[82]

O
th

e
r

N
o
ta

b
le

A
sp

e
ct

s

1. Dialoflow provides

a set of pre-configured

Intents, such as those

for having a casual

conversation

2. External busi-

ness logic must be

exposed through a

single API endpoint

1. Watson Assis-

tant provides a set of

pre-configured Intent

group, known as Skills

2. Different Intents

can invoke different

API endpoints

1. Lex provides a

set of pre-built in-

tents, mostly useful

for playing media

(e.g. PauseIntent,

ShuffleOnIntent,

LoopOffIntent etc.)

2. Different Intents can

invoke different AWS

Lambda functions



164 Comparison of the Elements of Contextual Reactive Pattern



References

[1] D. Taranov, “Facebook comments growth tools 2.0 : Manychat.”

https://support.manychat.com/support/solutions/articles/

36000232601-facebook-comments-trigger-2-0, July 2020. (Accessed

on 08/07/2020).

[2] D. L. AG, “The lufthansa chatbot.” https://www.lufthansa.com/us/en/

chatbot. (Accessed on 08/07/2020).

[3] Business Insider, “80% of businesses want chatbots by 2020,” 2016.

[4] C. Rajnerowicz, “The Best Innovative Chatbot Examples by Indus-

try.” https://www.tidio.com/blog/chatbot-examples. (Accessed on

01/07/2020).

[5] J. Jose, “Create your ELIZA Chatbot in 20 minutes with Regular Ex-

pressions (Day 6).” http://botartisanz.com/blog/create-your-eliza-

chatbot-in-20-minutes-with-regular-expressions-day-6. (Accessed on

01/07/2020).

[6] S. Cornaby, “Let’s Program A Chatbot 6: Don’t Fear The Regex.”

https://scottcornaby.com/2013/10/26/lets-program-a-chatbot-6-

dont-fear-the-regex/. (Accessed on 01/07/2020).

[7] N. Joshi, “Choosing Between Rule-Based Bots And AI Bots.”

https://www.forbes.com/sites/cognitiveworld/2020/02/23/choosing-

between-rule-based-bots-and-ai-bots/#3e83037f353d. (Accessed on

01/07/2020).

https://support.manychat.com/support/solutions/articles/36000232601-facebook-comments-trigger-2-0
https://support.manychat.com/support/solutions/articles/36000232601-facebook-comments-trigger-2-0
https://www.lufthansa.com/us/en/chatbot
https://www.lufthansa.com/us/en/chatbot
https://www.tidio.com/blog/chatbot-examples
http://botartisanz.com/blog/create-your-eliza-chatbot-in-20-minutes-with-regular-expressions-day-6
http://botartisanz.com/blog/create-your-eliza-chatbot-in-20-minutes-with-regular-expressions-day-6
https://scottcornaby.com/2013/10/26/lets-program-a-chatbot-6-dont-fear-the-regex/
https://scottcornaby.com/2013/10/26/lets-program-a-chatbot-6-dont-fear-the-regex/
https://www.forbes.com/sites/cognitiveworld/2020/02/23/choosing-between-rule-based-bots-and-ai-bots/#3e83037f353d
https://www.forbes.com/sites/cognitiveworld/2020/02/23/choosing-between-rule-based-bots-and-ai-bots/#3e83037f353d


166 REFERENCES

[8] U. Shahid, “A Beginner’s Guide to Chatbots.” https://

blog.datasciencedojo.com/introduction-to-chatbots/. (Accessed

on 01/07/2020).

[9] J. Alburger, “Rule-Based Chatbots vs. AI Chatbots: Key Differences.” https:

//www.hubtype.com/blog/rule-based-chatbots-vs-ai-chatbots/. (Ac-

cessed on 01/07/2020).

[10] J. Weizenbaum, “ELIZA—a computer program for the study of natural lan-

guage communication between man and machine,” Communications of the

ACM, vol. 9, no. 1, pp. 36–45, 1966.

[11] K. M. Colby, “Ten criticisms of parry,” ACM SIGART Bulletin, no. 48, pp. 5–

9, 1974.

[12] A. Turing, “Mind,” Mind, vol. 59, no. 236, pp. 433–460, 1950.

[13] R. Carpenter, “Jabberwacky-live chat bot.” http://www.jabberwacky.com/.

(Accessed on 01/07/2020).

[14] R. Carpenter, “Cleverbot.com–a clever bot.” https://www.cleverbot.com/.

(Accessed on 01/07/2020).

[15] W. contributors, “Dr. Sbaitso - Wikipedia.” https://en.wikipedia.org/

wiki/Dr. Sbaitso. (Accessed on 01/07/2020).

[16] M. d. G. B. Marietto, R. V. de Aguiar, G. d. O. Barbosa, W. T. Botelho,

E. Pimentel, R. d. S. França, and V. L. da Silva, “Artificial intelligence markup

language: a brief tutorial,” arXiv preprint arXiv:1307.3091, 2013.

[17] S. Worswick, “Mitsuku.” https://www.pandorabots.com/mitsuku/. (Ac-

cessed on 01/07/2020).

[18] A. Solutions, “Elbot the Chatbot.” https://www.elbot.com/. (Accessed on

01/07/2020).

[19] W. contributors, “SmarterChild - Wikipedia.” https://en.wikipedia.org/

wiki/SmarterChild. (Accessed on 01/07/2020).

https://blog.datasciencedojo.com/introduction-to-chatbots/
https://blog.datasciencedojo.com/introduction-to-chatbots/
https://www.hubtype.com/blog/rule-based-chatbots-vs-ai-chatbots/
https://www.hubtype.com/blog/rule-based-chatbots-vs-ai-chatbots/
http://www.jabberwacky.com/
https://www.cleverbot.com/
https://en.wikipedia.org/wiki/Dr._Sbaitso
https://en.wikipedia.org/wiki/Dr._Sbaitso
https://www.pandorabots.com/mitsuku/
https://www.elbot.com/
https://en.wikipedia.org/wiki/SmarterChild
https://en.wikipedia.org/wiki/SmarterChild


REFERENCES 167

[20] R. High, “The era of cognitive systems: An inside look at IBM Watson and

how it works,” IBM Corporation, Redbooks, pp. 1–16, 2012.

[21] IBM Corporation, “Watson Assistant.” https://www.ibm.com/cloud/

watson-assistant/. (Accessed on 01/07/2020).

[22] AI Multiple, “Top 60 Chatbot Companies of 2020: In-depth Guide.” https:

//research.aimultiple.com/chatbot-companies/, July 2020. (Accessed on

10/07/2020).

[23] Apple Inc., “Siri - Apple.” https://www.apple.com/siri/. (Accessed on

01/07/2020).

[24] Google LLC, “Google Assistant — Your own personal Google.” https://

assistant.google.com/. (Accessed on 01/07/2020).

[25] Microsoft Corporation, “Cortana - Your personal productivity assistant.”

https://www.microsoft.com/en-us/cortana. (Accessed on 01/07/2020).

[26] T. B. Elliot, Alexa User Guide For Beginners: Tips and Tricks for Fully Op-

timizing Your Amazon Devices (Amazon Echo plus, Amazon Echo Dot, Fire

TV, Fire Tablet, Etc.). North Charleston, SC, USA: CreateSpace Independent

Publishing Platform, 2018.

[27] Google LLC, “Dialogflow.” https://dialogflow.com/. (Accessed on

01/07/2020).

[28] Amazon.com Inc., “Amazon Lex – Build Conversation Bots.” https://

aws.amazon.com/lex/. (Accessed on 01/07/2020).

[29] P. B. Brandtzaeg and A. Følstad, “Chatbots: changing user needs and moti-

vations,” interactions, vol. 25, no. 5, pp. 38–43, 2018.

[30] A. P. Chaves and M. A. Gerosa, “How should my chatbot interact? A survey

on human-chatbot interaction design,” arXiv preprint arXiv:1904.02743, 2019.

[31] L. Waldera, “Development of a Preliminary Measurement Tool of User Satis-

faction for Information-Retrieval Chatbots,” B.S. thesis, University of Twente,

2019.

https://www.ibm.com/cloud/watson-assistant/
https://www.ibm.com/cloud/watson-assistant/
https://research.aimultiple.com/chatbot-companies/
https://research.aimultiple.com/chatbot-companies/
https://www.apple.com/siri/
https://assistant.google.com/
https://assistant.google.com/
https://www.microsoft.com/en-us/cortana
https://dialogflow.com/
https://aws.amazon.com/lex/
https://aws.amazon.com/lex/


168 REFERENCES

[32] X. Wang, S. S. Sohn, and M. Kapadia, “Towards a Conversational Interface

for Authoring Intelligent Virtual Characters,” in Proceedings of the 19th ACM

International Conference on Intelligent Virtual Agents, pp. 127–129, ACM,

2019.

[33] E. Fast, B. Chen, J. Mendelsohn, J. Bassen, and M. S. Bernstein, “Iris: A

conversational agent for complex tasks,” in Proceedings of the 2018 CHI Con-

ference on Human Factors in Computing Systems, p. 473, ACM, 2018.

[34] R. H̊avik, J. D. Wake, E. Flobak, A. Lundervold, and F. Guribye, “A Con-

versational Interface for Self-screening for ADHD in Adults,” in International

Conference on Internet Science, pp. 133–144, Springer, 2018.

[35] J. Allen, G. Ferguson, and A. Stent, “An architecture for more realistic con-

versational systems,” in Proceedings of the 6th international conference on

Intelligent user interfaces, pp. 1–8, 2001.

[36] T. Reenskaug, “Mvc xerox parc 1978-79,” Trygve/MVC, 1979.

[37] G. Pilato, A. Augello, and S. Gaglio, “A modular architecture for adaptive

ChatBots,” in 2011 IEEE Fifth International Conference on Semantic Com-

puting, pp. 177–180, IEEE, 2011.

[38] J. Cahn, “CHATBOT: Architecture, Design, & Development,” 2017. Senior

Thesis, University of Pennsylvania.

[39] X. Franch, L. López, C. Cares, and D. Colomer, “The i* framework for

goal-oriented modeling,” in Domain-specific conceptual modeling, pp. 485–506,

Springer, 2016.

[40] Z. Babar, A. Lapouchnian, and E. Yu, “Chatbot Design-Reasoning about

design options using i* and process architecture,” in CEUR Workshop Pro-

ceedings, pp. 73–78, 2017.

[41] T. E. B. Manager, “A breakdown of chatbot architecture and how it works - en-

terprise bot manager.” https://www.enterprisebotmanager.com/chatbot-

architecture-and-how-they-work/. (Accessed on 07/31/2020).

https://www.enterprisebotmanager.com/chatbot-architecture-and-how-they-work/
https://www.enterprisebotmanager.com/chatbot-architecture-and-how-they-work/


REFERENCES 169

[42] N. Saxena, “Chatbot architecture tutorial.” https://

towardsdatascience.com/chatbot-tutorial-choosing-the-right-

chatbot-architecture-5539c8489def, January 2020. (Accessed on

07/31/2020).

[43] M. Labs, “How do chatbots work? a guide to the chatbot archi-

tecture.” https://marutitech.com/chatbots-work-guide-chatbot-

architecture/. (Accessed on 07/31/2020).

[44] A. Smith, “Understanding architecture models of chatbot and re-

sponse generation mechanisms - dzone ai.” https://dzone.com/articles/

understanding-architecture-models-of-chatbot-and-r, March 2020.

(Accessed on 07/31/2020).

[45] AltexSoft, “A technical guide to building an ai chatbot.” https:

//www.altexsoft.com/blog/datascience/a-technological-guide-to-

building-an-ai-chatbot/, February 2019. (Accessed on 07/31/2020).

[46] B. R. Singh, “Chat bots — designing intents and entities for your nlp

models.” https://medium.com/@brijrajsingh/chat-bots-designing-

intents-and-entities-for-your-nlp-models-35c385b7730d, January

2017. (Accessed on 07/31/2020).

[47] S. Karri, “What goes into making a successful nlp design for chatbots.”

https://blog.kore.ai/what-goes-into-making-a-successful-nlp-

design-for-chatbots. (Accessed on 07/31/2020).

[48] elprocus.com, “Chatbot : Architecture, applications and design process

steps.” https://www.elprocus.com/chatbot-design-process-and-its-

architecture/. (Accessed on 07/31/2020).

[49] J. Gao, M. Galley, and L. Li, Neural Approaches to Conversational AI: Ques-

tion Answering, Task-oriented Dialogues and Social Chatbots. Now Founda-

tions and Trends, 2019.

https://towardsdatascience.com/chatbot-tutorial-choosing-the-right-chatbot-architecture-5539c8489def
https://towardsdatascience.com/chatbot-tutorial-choosing-the-right-chatbot-architecture-5539c8489def
https://towardsdatascience.com/chatbot-tutorial-choosing-the-right-chatbot-architecture-5539c8489def
https://marutitech.com/chatbots-work-guide-chatbot-architecture/
https://marutitech.com/chatbots-work-guide-chatbot-architecture/
https://dzone.com/articles/understanding-architecture-models-of-chatbot-and-r
https://dzone.com/articles/understanding-architecture-models-of-chatbot-and-r
https://www.altexsoft.com/blog/datascience/a-technological-guide-to-building-an-ai-chatbot/
https://www.altexsoft.com/blog/datascience/a-technological-guide-to-building-an-ai-chatbot/
https://www.altexsoft.com/blog/datascience/a-technological-guide-to-building-an-ai-chatbot/
https://medium.com/@brijrajsingh/chat-bots-designing-intents-and-entities-for-your-nlp-models-35c385b7730d
https://medium.com/@brijrajsingh/chat-bots-designing-intents-and-entities-for-your-nlp-models-35c385b7730d
https://blog.kore.ai/what-goes-into-making-a-successful-nlp-design-for-chatbots
https://blog.kore.ai/what-goes-into-making-a-successful-nlp-design-for-chatbots
https://www.elprocus.com/chatbot-design-process-and-its-architecture/
https://www.elprocus.com/chatbot-design-process-and-its-architecture/


170 REFERENCES

[50] J. Guo, Y. Fan, L. Pang, L. Yang, Q. Ai, H. Zamani, C. Wu, W. B. Croft, and

X. Cheng, “A deep look into neural ranking models for information retrieval,”

Information Processing & Management, p. 102067, 2019.

[51] P. Suta, X. Lan, B. Wu, P. Mongkolnam, and J. H. Chan, “An Overview of

Machine Learning in Chatbots,” International Journal of Mechanical Engi-

neering and Robotics Research, vol. 9, no. 4, 2020.

[52] H. Chen, X. Liu, D. Yin, and J. Tang, “A survey on dialogue systems: Recent

advances and new frontiers,” Acm Sigkdd Explorations Newsletter, vol. 19,

no. 2, pp. 25–35, 2017.

[53] D. Newman, “How chatbots and deep learning will change the future of

organizations.” https://www.forbes.com/sites/danielnewman/2016/06/

28/how-chatbots-and-deep-learning-will-change-the-future-of-

organizations/#4a205fb94734, June 2016. (Accessed on 08/01/2020).

[54] S. C. Hoi, J. Wang, and P. Zhao, “Libol: A library for online learning algo-

rithms,” The Journal of Machine Learning Research, vol. 15, no. 1, pp. 495–

499, 2014.

[55] A. B. Arrieta, N. Dı́az-Rodŕıguez, J. Del Ser, A. Bennetot, S. Tabik, A. Bar-

bado, S. Garćıa, S. Gil-López, D. Molina, R. Benjamins, et al., “Explainable

Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and chal-

lenges toward responsible AI,” Information Fusion, vol. 58, pp. 82–115, 2020.

[56] A. Holzinger, P. Kieseberg, E. Weippl, and A. M. Tjoa, “Current advances,

trends and challenges of machine learning and knowledge extraction: from ma-

chine learning to explainable AI,” in International Cross-Domain Conference

for Machine Learning and Knowledge Extraction, pp. 1–8, Springer, 2018.

[57] L. Deng and X. Huang, “Challenges in adopting speech recognition,” Com-

munications of the ACM, vol. 47, no. 1, pp. 69–75, 2004.

[58] V. Radha and C. Vimala, “A review on speech recognition challenges and

approaches,” doaj. org, vol. 2, no. 1, pp. 1–7, 2012.

https://www.forbes.com/sites/danielnewman/2016/06/28/how-chatbots-and-deep-learning-will-change-the-future-of-organizations/#4a205fb94734
https://www.forbes.com/sites/danielnewman/2016/06/28/how-chatbots-and-deep-learning-will-change-the-future-of-organizations/#4a205fb94734
https://www.forbes.com/sites/danielnewman/2016/06/28/how-chatbots-and-deep-learning-will-change-the-future-of-organizations/#4a205fb94734


REFERENCES 171

[59] P. Taylor, Text-to-Speech Synthesis. Cambridge University Press, 2009.

[60] A. Rosenberg, “Speech, prosody, and machines: Nine challenges for prosody

research,” in Proc. Speech Prosody, pp. 784–793, 2018.

[61] R. S. Lavin, “Issues in Chinese prosody: conceptual foundations of a

linguistically-motivated text-to-speech system for Mandarin,” in Proceedings

of the 16th Pacific Asia Conference on Language, Information and Computa-

tion, pp. 259–270, 2001.

[62] Y. Kim, “Convolutional neural networks for sentence classification,” arXiv

preprint arXiv:1408.5882, 2014.

[63] K. Yao, B. Peng, Y. Zhang, D. Yu, G. Zweig, and Y. Shi, “Spoken language

understanding using long short-term memory neural networks,” in 2014 IEEE

Spoken Language Technology Workshop (SLT), pp. 189–194, IEEE, 2014.

[64] Z. Zhao and Y. Wu, “Attention-Based Convolutional Neural Networks for

Sentence Classification.,” in INTERSPEECH, pp. 705–709, 2016.

[65] C. Marshall, “What is named entity recognition (ner) and how

can i use it?.” https://medium.com/mysuperai/what-is-named-entity-

recognition-ner-and-how-can-i-use-it-2b68cf6f545d, December 2019.

(Accessed on 08/05/2020).

[66] G. Mesnil, Y. Dauphin, K. Yao, Y. Bengio, L. Deng, D. Hakkani-Tur, X. He,

L. Heck, G. Tur, D. Yu, et al., “Using recurrent neural networks for slot fill-

ing in spoken language understanding,” IEEE/ACM Transactions on Audio,

Speech, and Language Processing, vol. 23, no. 3, pp. 530–539, 2014.

[67] B. Liu and I. Lane, “Recurrent Neural Network Structured Output Prediction

for Spoken Language Understanding,” in Proc. NIPS Workshop on Machine

Learning for Spoken Language Understanding and Interactions, 2015.

[68] N. T. Vu, “Sequential convolutional neural networks for slot filling in spoken

language understanding,” arXiv preprint arXiv:1606.07783, 2016.

https://medium.com/mysuperai/what-is-named-entity-recognition-ner-and-how-can-i-use-it-2b68cf6f545d
https://medium.com/mysuperai/what-is-named-entity-recognition-ner-and-how-can-i-use-it-2b68cf6f545d


172 REFERENCES

[69] P. Xu and R. Sarikaya, “Convolutional neural network based triangular crf

for joint intent detection and slot filling,” in 2013 ieee workshop on automatic

speech recognition and understanding, pp. 78–83, IEEE, 2013.

[70] B. Liu and I. Lane, “Attention-based recurrent neural network models for joint

intent detection and slot filling,” arXiv preprint arXiv:1609.01454, 2016.

[71] Q. Chen, Z. Zhuo, and W. Wang, “Bert for joint intent classification and slot

filling,” arXiv preprint arXiv:1902.10909, 2019.

[72] I. Facebook, “Messenger.” https://www.messenger.com/. (Accessed on

08/07/2020).

[73] S. Technologies, “Where work happens — slack.” https://slack.com/intl/

en-in/. (Accessed on 08/07/2020).

[74] T. F. LLC, “Telegram messenger.” https://telegram.org/. (Accessed on

08/07/2020).

[75] freshworks.com, “Chat widget — freshchat by freshworks.” https://

www.freshworks.com/live-chat-software/chat-widget/. (Accessed on

08/08/2020).

[76] R. Fielding, Representational state transfer (REST). Chapter 5 in Architec-

tural Styles and the Design of Networkbased Software Architectures. PhD the-

sis, University of California, Irvine, CA, 2000.

[77] G. Muller, “Right Sizing Reference Architectures; How to provide specific

guidance with limited information,” in INCOSE International Symposium,

vol. 18, pp. 2047–2054, Wiley Online Library, 2008.

[78] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice.

Addison-Wesley Professional, second ed., 2003.

[79] I. Corporation, “Watson speech to text - overview — ibm cloud.”

https://www.ibm.com/in-en/cloud/watson-speech-to-text. (Accessed on

08/05/2020).

https://www.messenger.com/
https://slack.com/intl/en-in/
https://slack.com/intl/en-in/
https://telegram.org/
https://www.freshworks.com/live-chat-software/chat-widget/
https://www.freshworks.com/live-chat-software/chat-widget/
https://www.ibm.com/in-en/cloud/watson-speech-to-text


REFERENCES 173

[80] I. Corporation, “Watson text to speech - overview — ibm cloud.”

https://www.ibm.com/in-en/cloud/watson-text-to-speech. (Accessed on

08/05/2020).

[81] I. Corporation, “Ibm cloud functions.” https://cloud.ibm.com/functions/.

(Accessed on 08/08/2020).

[82] A. Inc., “Aws lambda – serverless compute - amazon web services.” https:

//aws.amazon.com/lambda/. (Accessed on 08/08/2020).

[83] S. Fürst, J. Mössinger, S. Bunzel, T. Weber, F. Kirschke-Biller, P. Heitkämper,

G. Kinkelin, K. Nishikawa, and K. Lange, “AUTOSAR–A Worldwide Stan-

dard is on the Road,” in 14th International VDI Congress Electronic Systems

for Vehicles, Baden-Baden, vol. 62, p. 5, 2009.

[84] F. Wartena, J. Muskens, L. Schmitt, and M. Petkovic, “Continua: The ref-

erence architecture of a personal telehealth ecosystem,” in The 12th IEEE

International Conference on e-Health Networking, Applications and Services,

pp. 1–6, IEEE, 2010.

[85] J. Vesterager, M. Tolle, and P. Bernus, “VERA: virtual enterprise reference

architecture,” in VTT SYMPOSIUM, vol. 224, pp. 39–52, VTT; 1999, 2003.

[86] R. B. Bohn, J. Messina, F. Liu, J. Tong, and J. Mao, “NIST cloud computing

reference architecture,” in 2011 IEEE World Congress on Services, pp. 594–

596, IEEE, 2011.

[87] S. Mart́ınez-Fernández, C. P. Ayala, X. Franch, and H. M. Marques, “Ben-

efits and drawbacks of reference architectures,” in European Conference on

Software Architecture, pp. 307–310, Springer, 2013.

[88] E. Y. Nakagawa, P. Oliveira Antonino, and M. Becker, “Reference architecture

and product line architecture: A subtle but critical difference,” in Software

Architecture (I. Crnkovic, V. Gruhn, and M. Book, eds.), (Berlin, Heidelberg),

pp. 207–211, Springer Berlin Heidelberg, 2011.

https://www.ibm.com/in-en/cloud/watson-text-to-speech
https://cloud.ibm.com/functions/
https://aws.amazon.com/lambda/
https://aws.amazon.com/lambda/


174 REFERENCES

[89] R. Kompella, “Conversational ai chat-bot — architecture overview.”

https://towardsdatascience.com/architecture-overview-of-a-

conversational-ai-chat-bot-4ef3dfefd52e. (Accessed on 08/15/2020).

[90] J. Hansen, “Modern chatbot reference architecture.” https:

//jannehansen.com/chatbot-architecture/. (Accessed on 08/15/2020).

[91] S. Shinde, “Intelligent chatbot framework & reference architecture.”

https://medium.com/@suraj.shinde/intelligent-chatbot-framework-

reference-architecture-3e7222907bb4. (Accessed on 08/15/2020).

[92] minigbusinessdata.com, “Dialogflow vs Lex vs Luis vs Watson vs Chatfuel.”

https://miningbusinessdata.com/dialogflow-vs-lex-vs-luis-vs-

watson-vs-chatfuel/, July 2020. (Accessed on 08/08/2020).

[93] A. Brooks, “10 Best Chatbot Builders in 2019.” https://

www.ventureharbour.com/best-chatbot-builders/, June 2020. (Accessed

on 08/08/2020).

[94] G. LLC, “Speech-to-text: Automatic speech recognition — google cloud.”

https://cloud.google.com/speech-to-text. (Accessed on 08/05/2020).

[95] Sonix, “Automatically convert audio to text—it’s fast, simple, & affordable

— sonix.” https://sonix.ai/. (Accessed on 08/05/2020).

[96] A. Inc., “Amazon transcribe – speech to text - aws.” https://

aws.amazon.com/transcribe/. (Accessed on 08/05/2020).

[97] G. Transcribe, “Go transcribe: Fast, simple & affordable ai based transcrip-

tion.” https://go-transcribe.com/. (Accessed on 08/05/2020).

[98] C. M. University, “Cmusphinx open source speech recognition.” https://

cmusphinx.github.io/. (Accessed on 08/05/2020).

[99] D. Povey et al., “Kaldi: About the kaldi project.” https://kaldi-asr.org/

doc/about.html. (Accessed on 08/05/2020).

https://towardsdatascience.com/architecture-overview-of-a-conversational-ai-chat-bot-4ef3dfefd52e
https://towardsdatascience.com/architecture-overview-of-a-conversational-ai-chat-bot-4ef3dfefd52e
https://jannehansen.com/chatbot-architecture/
https://jannehansen.com/chatbot-architecture/
https://medium.com/@suraj.shinde/intelligent-chatbot-framework-reference-architecture-3e7222907bb4
https://medium.com/@suraj.shinde/intelligent-chatbot-framework-reference-architecture-3e7222907bb4
https://miningbusinessdata.com/dialogflow-vs-lex-vs-luis-vs-watson-vs-chatfuel/
https://miningbusinessdata.com/dialogflow-vs-lex-vs-luis-vs-watson-vs-chatfuel/
https://www.ventureharbour.com/best-chatbot-builders/
https://www.ventureharbour.com/best-chatbot-builders/
https://cloud.google.com/speech-to-text
https://sonix.ai/
https://aws.amazon.com/transcribe/
https://aws.amazon.com/transcribe/
https://go-transcribe.com/
https://cmusphinx.github.io/
https://cmusphinx.github.io/
https://kaldi-asr.org/doc/about.html
https://kaldi-asr.org/doc/about.html


REFERENCES 175

[100] M. Foundation, “Home · mozilla/deepspeech wiki · github.” https://

github.com/mozilla/DeepSpeech/wiki. (Accessed on 08/05/2020).

[101] G. LLC, “Text-to-speech: Lifelike speech synthesis — google cloud.” https:

//cloud.google.com/text-to-speech. (Accessed on 08/05/2020).

[102] M. Corporation, “Text to speech — microsoft azure.” https:

//azure.microsoft.com/en-us/services/cognitive-services/text-

to-speech/. (Accessed on 08/05/2020).

[103] A. Inc., “Amazon polly.” https://aws.amazon.com/polly/. (Accessed on

08/05/2020).

[104] M. Foundation, “Github - mozilla/tts: Deep learning for text to speech (dis-

cussion forum: https://discourse.mozilla.org/c/tts).” https://github.com/

mozilla/TTS. (Accessed on 08/05/2020).

[105] C. M. University, “Cmu flite: Speech synthesizer.” http://www.festvox.org/

flite/. (Accessed on 08/05/2020).

[106] R. Dunn, “Github - espeak-ng/espeak-ng: espeak ng is an open source speech

synthesizer that supports more than hundred languages and accents..” https:

//github.com/espeak-ng/espeak-ng. (Accessed on 08/05/2020).

[107] A. Jain, “A brief introduction to intent classification — by ak-

shat jain — towards data science.” https://towardsdatascience.com/a-

brief-introduction-to-intent-classification-96fda6b1f557, Novem-

ber 2018. (Accessed on 08/05/2020).

[108] T. Wochinger, “Rasa nlu in depth: Intent classification.” https:

//blog.rasa.com/rasa-nlu-in-depth-part-1-intent-classification/,

February 2019. (Accessed on 08/05/2020).

[109] W. contributors, “Template processor - wikipedia.” https://

en.wikipedia.org/wiki/Template processor. (Accessed on 08/05/2020).

https://github.com/mozilla/DeepSpeech/wiki
https://github.com/mozilla/DeepSpeech/wiki
https://cloud.google.com/text-to-speech
https://cloud.google.com/text-to-speech
https://azure.microsoft.com/en-us/services/cognitive-services/text-to-speech/
https://azure.microsoft.com/en-us/services/cognitive-services/text-to-speech/
https://azure.microsoft.com/en-us/services/cognitive-services/text-to-speech/
https://aws.amazon.com/polly/
https://github.com/mozilla/TTS
https://github.com/mozilla/TTS
http://www.festvox.org/flite/
http://www.festvox.org/flite/
https://github.com/espeak-ng/espeak-ng
https://github.com/espeak-ng/espeak-ng
https://towardsdatascience.com/a-brief-introduction-to-intent-classification-96fda6b1f557
https://towardsdatascience.com/a-brief-introduction-to-intent-classification-96fda6b1f557
https://blog.rasa.com/rasa-nlu-in-depth-part-1-intent-classification/
https://blog.rasa.com/rasa-nlu-in-depth-part-1-intent-classification/
https://en.wikipedia.org/wiki/Template_processor
https://en.wikipedia.org/wiki/Template_processor


176 REFERENCES

[110] awesomeopensource.com, “The top 118 template engine open source projects.”

https://awesomeopensource.com/projects/template-engine. (Accessed

on 08/05/2020).

[111] D. Stenberg, “curl.” https://curl.haxx.se/. (Accessed on 08/05/2020).

[112] hellotars.com, “Increase conversion rates with conversational landing pages for

google ads - tars.” https://hellotars.com/. (Accessed on 08/06/2020).

[113] M. Yang, “Messenger bot marketing made easy with manychat.” https://

manychat.com/. (Accessed on 08/06/2020).

[114] M. Lambert, “Chatbot decision trees. seriously, how hard can they be?.”

https://chatbotslife.com/chatbot-decision-trees-a42ed8b8cf32,

April 2018. (Accessed on 08/05/2020).

[115] yellow.systems, “How to build a chatbot from scratch (cost and features)

- yellow.” https://yellow.systems/blog/how-to-build-a-chatbot-from-

scratch. (Accessed on 08/06/2020).

[116] P. Pandey, “Building a simple chatbot from scratch in python (us-

ing nltk) — by parul pandey — analytics vidhya — medium.”

https://medium.com/analytics-vidhya/building-a-simple-chatbot-

in-python-using-nltk-7c8c8215ac6e, September 2018. (Accessed on

08/06/2020).

[117] N. S. Chauhan, “Build your first chatbot using python nltk — by nagesh

singh chauhan — towards data science.” https://towardsdatascience.com/

build-your-first-chatbot-using-python-nltk-5d07b027e727, October

2018. (Accessed on 08/06/2020).

[118] D. Singh, “Build a chatbot with python — pluralsight.” https://

www.pluralsight.com/guides/build-a-chatbot-with-python, April 2020.

(Accessed on 08/06/2020).

[119] S. Bird, E. Loper, E. Klein, et al., “Natural language toolkit — nltk 3.5

documentation.” https://www.nltk.org/. (Accessed on 08/06/2020).

https://awesomeopensource.com/projects/template-engine
https://curl.haxx.se/
https://hellotars.com/
https://manychat.com/
https://manychat.com/
https://chatbotslife.com/chatbot-decision-trees-a42ed8b8cf32
https://yellow.systems/blog/how-to-build-a-chatbot-from-scratch
https://yellow.systems/blog/how-to-build-a-chatbot-from-scratch
https://medium.com/analytics-vidhya/building-a-simple-chatbot-in-python-using-nltk-7c8c8215ac6e
https://medium.com/analytics-vidhya/building-a-simple-chatbot-in-python-using-nltk-7c8c8215ac6e
https://towardsdatascience.com/build-your-first-chatbot-using-python-nltk-5d07b027e727
https://towardsdatascience.com/build-your-first-chatbot-using-python-nltk-5d07b027e727
https://www.pluralsight.com/guides/build-a-chatbot-with-python
https://www.pluralsight.com/guides/build-a-chatbot-with-python
https://www.nltk.org/


REFERENCES 177

[120] N. Kohn, “Build an ai / machine learning chatbot in python with rasa — part

1.” https://medium.com/hackernoon/build-simple-chatbot-with-rasa-

part-1-f4c6d5bb1aea, March 2018. (Accessed on 08/06/2020).

[121] N. Kohn, “Build an ai / machine learning chatbot in python with rasa — part

2.” https://medium.com/hackernoon/build-simple-chatbot-with-rasa-

part-2-16726357b72c, March 2018. (Accessed on 08/06/2020).

[122] R. Jain, “1. build a conversational chatbot with rasa stack and python—

rasa nlu.” https://medium.com/@itsromiljain/build-a-conversational-

chatbot-with-rasa-stack-and-python-rasa-nlu-b79dfbe59491, March

2019. (Accessed on 08/06/2020).

[123] R. Jain, “2. build a conversational chatbot with rasa stack and python — rasa

core.” https://medium.com/@itsromiljain/build-a-conversational-

chatbot-with-rasa-stack-and-python-rasa-core-41b9c38c26b, April

2019. (Accessed on 08/06/2020).

[124] P. Voigt and A. v. d. Bussche, The EU General Data Protection Regulation

(GDPR): A Practical Guide. Springer Publishing Company, Incorporated,

1st ed., 2017.

[125] S. Roca, J. Sancho, J. Garćıa, and Álvaro Alesanco, “Microservice chatbot

architecture for chronic patient support,” Journal of Biomedical Informatics,

vol. 102, p. 103305, 2020.

[126] B. Croft and J. Lafferty, Language modeling for information retrieval, vol. 13.

Springer Science & Business Media, 2003.

[127] F. Song and W. B. Croft, “A general language model for information re-

trieval,” in Proceedings of the eighth international conference on Information

and knowledge management, pp. 316–321, 1999.

[128] T. Ray, “Openai’s gigantic gpt-3 hints at the limits of language models

for ai — zdnet.” https://www.zdnet.com/article/openais-gigantic-gpt-

3-hints-at-the-limits-of-language-models-for-ai/, June 2020. (Ac-

cessed on 08/10/2020).

https://medium.com/hackernoon/build-simple-chatbot-with-rasa-part-1-f4c6d5bb1aea
https://medium.com/hackernoon/build-simple-chatbot-with-rasa-part-1-f4c6d5bb1aea
https://medium.com/hackernoon/build-simple-chatbot-with-rasa-part-2-16726357b72c
https://medium.com/hackernoon/build-simple-chatbot-with-rasa-part-2-16726357b72c
https://medium.com/@itsromiljain/build-a-conversational-chatbot-with-rasa-stack-and-python-rasa-nlu-b79dfbe59491
https://medium.com/@itsromiljain/build-a-conversational-chatbot-with-rasa-stack-and-python-rasa-nlu-b79dfbe59491
https://medium.com/@itsromiljain/build-a-conversational-chatbot-with-rasa-stack-and-python-rasa-core-41b9c38c26b
https://medium.com/@itsromiljain/build-a-conversational-chatbot-with-rasa-stack-and-python-rasa-core-41b9c38c26b
https://www.zdnet.com/article/openais-gigantic-gpt-3-hints-at-the-limits-of-language-models-for-ai/
https://www.zdnet.com/article/openais-gigantic-gpt-3-hints-at-the-limits-of-language-models-for-ai/


178 REFERENCES

[129] O. Davydova, “25 chatbot platforms: A comparative table — by data

monsters — chatbots journal.” https://chatbotsjournal.com/25-chatbot-

platforms-a-comparative-table-aeefc932eaff, May 2017. (Accessed on

08/10/2020).

[130] Ometrics, “2020 chatbot platform comparison reviews.” https:

//www.ometrics.com/blog/chatbot-platform-comparison-reviews/,

2020. (Accessed on 08/09/2020).

[131] S. Advice, “Chatbot software prices.” https://www.softwareadvice.com/

live-chat/chatbot-comparison/p/all/. (Accessed on 08/09/2020).

[132] capterrra.com, “Best conversational ai platform software 2020 — re-

views of the most popular tools & systems.” https://www.capterra.com/

conversational-ai-platform-software/, 2020. (Accessed on 08/10/2020).

[133] AIMultiple, “Top 175 chatbot platforms of 2020: In-depth guide.” https:

//aimultiple.com/chatbot-platform, 2020. (Accessed on 08/10/2020).

[134] P. RESEARCH, “Top 19 chatbot platforms in 2020 - reviews, features,

pricing, comparisons.” https://www.predictiveanalyticstoday.com/top-

chatbot-platform/, 2020. (Accessed on 08/10/2020).

[135] M. Corporation, “Luis (language understanding) - cognitive services - mi-

crosoft.” https://www.luis.ai/. (Accessed on 08/06/2020).

[136] A. Inc., “Amazon comprehend - natural language processing (nlp) and ma-

chine learning (ml).” https://aws.amazon.com/comprehend/. (Accessed on

08/06/2020).

[137] G. LLC, “Cloud natural language — google cloud.” https:

//cloud.google.com/natural-language. (Accessed on 08/06/2020).

[138] I. Corporation, “Watson natural language understanding - overview - india

— ibm.” https://www.ibm.com/in-en/cloud/watson-natural-language-

understanding. (Accessed on 08/06/2020).

https://chatbotsjournal.com/25-chatbot-platforms-a-comparative-table-aeefc932eaff
https://chatbotsjournal.com/25-chatbot-platforms-a-comparative-table-aeefc932eaff
https://www.ometrics.com/blog/chatbot-platform-comparison-reviews/
https://www.ometrics.com/blog/chatbot-platform-comparison-reviews/
https://www.softwareadvice.com/live-chat/chatbot-comparison/p/all/
https://www.softwareadvice.com/live-chat/chatbot-comparison/p/all/
https://www.capterra.com/conversational-ai-platform-software/
https://www.capterra.com/conversational-ai-platform-software/
https://aimultiple.com/chatbot-platform
https://aimultiple.com/chatbot-platform
https://www.predictiveanalyticstoday.com/top-chatbot-platform/
https://www.predictiveanalyticstoday.com/top-chatbot-platform/
https://www.luis.ai/
https://aws.amazon.com/comprehend/
https://cloud.google.com/natural-language
https://cloud.google.com/natural-language
https://www.ibm.com/in-en/cloud/watson-natural-language-understanding
https://www.ibm.com/in-en/cloud/watson-natural-language-understanding


REFERENCES 179

[139] S. Madan, “A Literature Analysis on Privacy Preservation Techniques,” in

Advances in Computing and Intelligent Systems, pp. 223–230, Springer, 2020.

[140] A. Ilavarasi, B. Sathiyabhama, and S. Poorani, “A survey on privacy preserv-

ing data mining techniques,” International Journal of Computer Science and

Business Informatics, vol. 7, no. 1, 2013.

[141] A. Weidauer, “Github - rasahq/rasa: Open source machine learning frame-

work to automate text- and voice-based conversations.” https://github.com/

RasaHQ/rasa. (Accessed on 08/06/2020).

[142] M. Honnibal, “spacy - industrial-strength natural language processing in

python.” https://spacy.io/. (Accessed on 08/06/2020).

[143] R. T. Ltd., “gensim: Topic modelling for humans.” https:

//radimrehurek.com/gensim/. (Accessed on 08/06/2020).

[144] G. LLC, “Tensorflow.” https://www.tensorflow.org/. (Accessed on

08/06/2020).

[145] botscrew.com, “Botscrew bot framework - botscrew.” https:

//botscrew.com/blog/botscrew-bot-framework/. (Accessed on

08/06/2020).

[146] A. S. Foundation, “Apache opennlp.” https://opennlp.apache.org/. (Ac-

cessed on 08/06/2020).

[147] A. S. Foundation, “Apache uima.” https://uima.apache.org/. (Accessed on

08/06/2020).

[148] S. University, “The stanford natural language processing group.” https://

nlp.stanford.edu/. (Accessed on 08/06/2020).

[149] H. B. Ezra and A. B. Ezra, “Snatchbot: Free chatbot solutions, intelligent

bots service and artificial intelligence.” https://snatchbot.me/. (Accessed

on 08/06/2020).

[150] D. Dumik, “Chatfuel.” https://chatfuel.com/. (Accessed on 08/06/2020).

https://github.com/RasaHQ/rasa
https://github.com/RasaHQ/rasa
https://spacy.io/
https://radimrehurek.com/gensim/
https://radimrehurek.com/gensim/
https://www.tensorflow.org/
https://botscrew.com/blog/botscrew-bot-framework/
https://botscrew.com/blog/botscrew-bot-framework/
https://opennlp.apache.org/
https://uima.apache.org/
https://nlp.stanford.edu/
https://nlp.stanford.edu/
https://snatchbot.me/
https://chatfuel.com/


180 REFERENCES

[151] Chatfuel, “Build smarter chatbots with ai.” https://blog.chatfuel.com/

how-to-build-smarter-bots-with-ai/, August 2019. (Accessed on

08/18/2020).

[152] F. ROSENZWEIG, “What to do if users don’t click the bot’s buttons

- manychat blog.” https://manychat.com/blog/what-to-do-if-users-

dont-click-the-bots-buttons/, July 2019. (Accessed on 08/18/2020).

[153] Edgar, “Ai setup — chatfuel documentation.” https://docs.chatfuel.com/

en/articles/828883-ai-setup, August 2020. (Accessed on 08/18/2020).

[154] W. contributors, “Goto - wikipedia.” https://en.wikipedia.org/wiki/Goto.

(Accessed on 08/18/2020).

[155] G. LLC, “Follow-up intents — dialogflow documentation — google

cloud.” https://cloud.google.com/dialogflow/docs/contexts-follow-

up-intents. (Accessed on 08/18/2020).

[156] G. LLC, “Input and output contexts — dialogflow documentation

— google cloud.” https://cloud.google.com/dialogflow/docs/contexts-

input-output. (Accessed on 08/18/2020).

[157] W. Chegham, “Mastering follow-up intents with dialogflow — medium.”

https://medium.com/google-developer-experts/mastering-follow-up-

intents-with-dialogflow-851b75b83f5a, November 2017. (Accessed on

08/18/2020).

[158] G. LLC, “Inline editor — dialogflow documentation — google cloud.”

https://cloud.google.com/dialogflow/docs/fulfillment-inline-

editor. (Accessed on 08/18/2020).

[159] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and

T. Berners-Lee, “RFC2616: Hypertext Transfer Protocol–HTTP/1.1,” 1999.

[160] R. Brink, “Handling Multi-Intent Questions in Watson Assistant.”

https://medium.com/ibm-watson/handling-multi-intent-questions-

in-watson-assistant-ccd0c6ea21e1. Accessed: 2019-07-20.

https://blog.chatfuel.com/how-to-build-smarter-bots-with-ai/
https://blog.chatfuel.com/how-to-build-smarter-bots-with-ai/
https://manychat.com/blog/what-to-do-if-users-dont-click-the-bots-buttons/
https://manychat.com/blog/what-to-do-if-users-dont-click-the-bots-buttons/
https://docs.chatfuel.com/en/articles/828883-ai-setup
https://docs.chatfuel.com/en/articles/828883-ai-setup
https://en.wikipedia.org/wiki/Goto
https://cloud.google.com/dialogflow/docs/contexts-follow-up-intents
https://cloud.google.com/dialogflow/docs/contexts-follow-up-intents
https://cloud.google.com/dialogflow/docs/contexts-input-output
https://cloud.google.com/dialogflow/docs/contexts-input-output
https://medium.com/google-developer-experts/mastering-follow-up-intents-with-dialogflow-851b75b83f5a
https://medium.com/google-developer-experts/mastering-follow-up-intents-with-dialogflow-851b75b83f5a
https://cloud.google.com/dialogflow/docs/fulfillment-inline-editor
https://cloud.google.com/dialogflow/docs/fulfillment-inline-editor
https://medium.com/ibm-watson/handling-multi-intent-questions-in-watson-assistant-ccd0c6ea21e1
https://medium.com/ibm-watson/handling-multi-intent-questions-in-watson-assistant-ccd0c6ea21e1


REFERENCES 181

[161] A. Agrawal and T. Prabhakar, “Hospitality of cloud platforms,” in Proceedings

of the 28th Annual ACM Symposium on Applied Computing, pp. 389–396,

ACM, 2013.

[162] L. Bass, F. Bachmann, and M. Klein, “Deriving architectural tactics-a

step toward methodical architectural design,” Software Engineering Institute,

Carnegie Mellon University CMU/SEI-2003-TR-004, 2003.

[163] L. Bass, P. Clements, and R. Kazman, Software Architecture in Practice.

Addison-Wesley Professional, third ed., 2012.

[164] M. Stal, F. Buschmann, and R. Meunier, “Pattern-oriented Software Archi-

tecture—A System of Patterns,” 1996.

[165] F. Bachmann, L. Bass, and R. Nord, “Modifiability tactics,” Software Engi-

neering Institute, Carnegie Mellon University CMU/SEI-2007-TR-002, 2007.

[166] J. Scott and R. Kazman, “Realizing and refining architectural tactics: Avail-

ability,” tech. rep., CARNEGIE-MELLON UNIV PITTSBURGH PA SOFT-

WARE ENGINEERING INST, 2009.

[167] P. Bourque, R. E. Fairley, et al., Guide to the software engineering body of

knowledge (SWEBOK (R)): Version 3.0. IEEE Computer Society Press, 2014.

[168] C. T. Solutions, “An Analysis of the Best NLP Tool to Build a Conversa-

tional Bot.” https://www.bitcoininsider.org/article/19026/analysis-

best-nlp-tool-build-conversational-bot, February 2018. (Accessed on

08/08/2020).

[169] ubisend.com, “Blog - your chatbot and mobile messaging resource - ubisend.”

https://blog.ubisend.com/. (Accessed on 08/13/2020).

[170] chatbots.org, “Chatbots.org - virtual assistants, virtual agents, chat bots, con-

versational agents, chatterbots.” https://www.chatbots.org/. (Accessed on

08/13/2020).

https://www.bitcoininsider.org/article/19026/analysis-best-nlp-tool-build-conversational-bot
https://www.bitcoininsider.org/article/19026/analysis-best-nlp-tool-build-conversational-bot
https://blog.ubisend.com/
https://www.chatbots.org/


182 REFERENCES

[171] J. Atwood and J. Spolsky, “Stack overflow - where developers learn, share, &

build careers.” https://stackoverflow.com/, September 2008. (Accessed on

08/13/2020).

[172] V. Belton and T. Stewart, Multiple criteria decision analysis: an integrated

approach. Springer Science & Business Media, 2002.

[173] C.-L. Hwang and K. Yoon, Multiple attribute decision making: methods and

applications a state-of-the-art survey, vol. 186. Springer Science & Business

Media, 2012.

[174] R. Kazman, L. Bass, G. Abowd, and M. Webb, “SAAM: A method for ana-

lyzing the properties of software architectures,” in Proceedings of 16th Inter-

national Conference on Software Engineering, pp. 81–90, IEEE, 1994.

[175] R. Kazman, M. Klein, M. Barbacci, T. Longstaff, H. Lipson, and J. Carriere,

“The architecture tradeoff analysis method,” in Proceedings. Fourth IEEE

International Conference on Engineering of Complex Computer Systems (Cat.

No. 98EX193), pp. 68–78, IEEE, 1998.

[176] S. CBAM, “Cost Benefit Analysis Method,” tech. rep., Software Engineering

Institute, Carnegie Mellon University, 2015.

[177] R. Kazman, “Tool support for architecture analysis and design,” in Joint pro-

ceedings of the second international software architecture workshop (ISAW-2)

and international workshop on multiple perspectives in software development

(Viewpoints’ 96) on SIGSOFT’96 workshops, pp. 94–97, 1996.

[178] L. Bass, “ArchE-An Architecture Design Assistant,” tech. rep., Software En-

gineering Institute, Carnegie Mellon University, 2007.

[179] S. Thiel, A. Hein, and H. Engelhardt, “Tool Support for Scenario-Based Ar-

chitecture Evaluation.,” in STRAW, pp. 41–45, 2003.

[180] M. T. Ionita, D. K. Hammer, and H. Obbink, “Scenario-based software ar-

chitecture evaluation methods: An overview,” in Workshop on methods and

techniques for software architecture review and assessment at the international

conference on software engineering, pp. 19–24, 2002.

https://stackoverflow.com/


REFERENCES 183

[181] M. A. Babar and I. Gorton, “Comparison of scenario-based software architec-

ture evaluation methods,” in 11th Asia-Pacific Software Engineering Confer-

ence, pp. 600–607, IEEE, 2004.

[182] M. A. Babar, L. Zhu, and R. Jeffery, “A framework for classifying and com-

paring software architecture evaluation methods,” in 2004 Australian Software

Engineering Conference. Proceedings., pp. 309–318, IEEE, 2004.

[183] D. Braun, A. Hernandez-Mendez, F. Matthes, and M. Langen, “Evaluating

natural language understanding services for conversational question answer-

ing systems,” in Proceedings of the 18th Annual SIGdial Meeting on Discourse

and Dialogue, (Saarbrücken, Germany), pp. 174–185, Association for Compu-

tational Linguistics, Aug. 2017.

[184] X. Liu, A. Eshghi, P. Swietojanski, and V. Rieser, “Benchmarking natural

language understanding services for building conversational agents,” arXiv e-

prints, p. arXiv:1903.05566, Mar 2019.

[185] P. Resnik and J. Lin, Evaluation of NLP Systems, ch. 11, pp. 271–295. John

Wiley & Sons, Ltd, 2010.

[186] R. BERGER, M. EBNER, and M. EBNER, “Conception of a Conversational

Interface to Provide a Guided Search of Study Related Data,” in International

Journal of Emerging Technologies in Learning (iJET), pp. 37–47, April 2019.

[187] M. Canonico and L. D. Russis, “A comparison and critique of natural language

understanding tools,” in In Cloud Computing 2018. 110–115, 06 2018.

[188] D. Peras, “Chatbot evaluation metrics,” Economic and Social Development:

Book of Proceedings, pp. 89–97, 2018.

[189] D. Braun and F. Matthes, “Towards a Framework for Classifying Chatbots,”

in Proceedings of the 21th International Conference on Enterprise Information

Systems - Volume 1: ICEIS, 2019.

[190] G. Daniel, J. Cabot, L. Deruelle, and M. Derras, “Multi-platform chatbot

modeling and deployment with the jarvis framework,” in International Con-



184 REFERENCES

ference on Advanced Information Systems Engineering, pp. 177–193, Springer,

2019.

[191] botpress.com, “Botpress — chatbot platform comparison.” https:

//botpress.com/blog/chatbot-platform-comparison. (Accessed on

08/15/2020).

[192] discover.bot, “A bot development and information portal - discover.bot.”

https://discover.bot/. (Accessed on 08/19/2020).

[193] A. Multiple, “Chatbot — aimultiple.” https://research.aimultiple.com/

category/e2e-chatbot/, September 2020. (Accessed on 08/19/2020).

[194] T. Wellhausen and A. Fiesser, “How to write a pattern? A rough guide for

first-time pattern authors,” in Proceedings of the 16th European Conference

on Pattern Languages of Programs, pp. 1–9, 2011.

[195] visual paradigm.com, “User story vs use case for agile software de-

velopment.” https://www.visual-paradigm.com/guide/agile-software-

development/user-story-vs-use-case/. (Accessed on 08/18/2020).

[196] D. Faggella, “7 chatbot use cases that actually work — emerj.”

https://emerj.com/ai-sector-overviews/7-chatbot-use-cases-that-

actually-work/, December 2019. (Accessed on 08/18/2020).

[197] O. web technology, “Building a chatbot leveraging artificial intel-

ligence technologies — open web technology - go digital.” https:

//openwt.com/en/cases/building-chatbot-leveraging-artificial-

intelligence-technologies. (Accessed on 08/18/2020).

[198] thebotforge.io, “Forging a successful chatbot project — the bot forge.” https:

//www.thebotforge.io/forging-a-successful-chatbot-project/. (Ac-

cessed on 08/18/2020).

[199] A. Multiple, “Why chatbots fail in 2020 (and why natural languages

are hard).” https://research.aimultiple.com/why-chatbots-fail/, July

2020. (Accessed on 08/19/2020).

https://botpress.com/blog/chatbot-platform-comparison
https://botpress.com/blog/chatbot-platform-comparison
https://discover.bot/
https://research.aimultiple.com/category/e2e-chatbot/
https://research.aimultiple.com/category/e2e-chatbot/
https://www.visual-paradigm.com/guide/agile-software-development/user-story-vs-use-case/
https://www.visual-paradigm.com/guide/agile-software-development/user-story-vs-use-case/
https://emerj.com/ai-sector-overviews/7-chatbot-use-cases-that-actually-work/
https://emerj.com/ai-sector-overviews/7-chatbot-use-cases-that-actually-work/
https://openwt.com/en/cases/building-chatbot-leveraging-artificial-intelligence-technologies
https://openwt.com/en/cases/building-chatbot-leveraging-artificial-intelligence-technologies
https://openwt.com/en/cases/building-chatbot-leveraging-artificial-intelligence-technologies
https://www.thebotforge.io/forging-a-successful-chatbot-project/
https://www.thebotforge.io/forging-a-successful-chatbot-project/
https://research.aimultiple.com/why-chatbots-fail/


REFERENCES 185

[200] discover.bot, “Pitfalls of natural language processing chatbots - discover.bot.”

https://discover.bot/bot-talk/natural-language-processing-

common-challenge/, October 2018. (Accessed on 08/19/2020).

[201] pubnub.com, “What is a serverless function? — pubnub.” https://

www.pubnub.com/blog/what-is-a-serverless-function/, May 2019. (Ac-

cessed on 08/19/2020).

[202] SMARTBEAR, “What is an api endpoint? — smartbear software

resources.” https://smartbear.com/learn/performance-monitoring/api-

endpoints/, 2018. (Accessed on 08/19/2020).

[203] M. Cohn, “User stories and user story examples by mike cohn.” https:

//www.mountaingoatsoftware.com/agile/user-stories. (Accessed on

08/20/2020).

[204] I. ISO, “8601: 2004,” Data elements and interchange formats–Information

interchange–Representation of dates and times, vol. 3, 2004.

[205] S. Srivastava, “ChanakyaAirlinesConfiguration Repository — Bitbucket.”

https://bitbucket.org/ssri5/chanakyaairlinesconfiguration/, May

2020. (Accessed on 08/21/2020).

[206] S. Srivastava, “AirlineOperationsBackend Repository — Bitbucket.” https:

//bitbucket.org/ssri5/airlineoperationsbackend/, May 2020. (Ac-

cessed on 08/21/2020).

[207] Open Source Initiative and others, “The MIT license.” https://

opensource.org/licenses/MIT, 2006. (Accessed on 08/21/2020).

[208] E. F. Codd, “A relational model of data for large shared data banks,” in

Software pioneers, pp. 263–294, Springer, 2002.

[209] D. D. Chamberlin and R. F. Boyce, “SEQUEL: A structured English query

language,” in Proceedings of the 1974 ACM SIGFIDET (now SIGMOD) work-

shop on Data description, access and control, pp. 249–264, 1974.

https://discover.bot/bot-talk/natural-language-processing-common-challenge/
https://discover.bot/bot-talk/natural-language-processing-common-challenge/
https://www.pubnub.com/blog/what-is-a-serverless-function/
https://www.pubnub.com/blog/what-is-a-serverless-function/
https://smartbear.com/learn/performance-monitoring/api-endpoints/
https://smartbear.com/learn/performance-monitoring/api-endpoints/
https://www.mountaingoatsoftware.com/agile/user-stories
https://www.mountaingoatsoftware.com/agile/user-stories
https://bitbucket.org/ssri5/chanakyaairlinesconfiguration/
https://bitbucket.org/ssri5/airlineoperationsbackend/
https://bitbucket.org/ssri5/airlineoperationsbackend/
https://opensource.org/licenses/MIT
https://opensource.org/licenses/MIT


186 REFERENCES

[210] ESPNcricinfo.com, “Statsguru — searchable cricket statistics database.”

http://stats.espncricinfo.com/ci/engine/stats/index.html, 1993. (Ac-

cessed on 12/09/2019).

[211] S. Srivastava, “Cricketnoviceexperiments repository — bitbucket.” https:

//bitbucket.org/ssri5/cricketnoviceexperiments/, August 2020. (Ac-

cessed on 08/27/2020).

[212] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of

deep bidirectional transformers for language understanding,” arXiv preprint

arXiv:1810.04805, 2018.

[213] I. Tenney, D. Das, and E. Pavlick, “Bert rediscovers the classical nlp pipeline,”

arXiv preprint arXiv:1905.05950, 2019.

[214] S. I. Nikolenko, S. Koltcov, and O. Koltsova, “Topic modelling for qualitative

studies,” Journal of Information Science, vol. 43, no. 1, pp. 88–102, 2017.

[215] J. C. K. Cheung and X. Li, “Sequence clustering and labeling for unsuper-

vised query intent discovery,” in Proceedings of the fifth ACM international

conference on Web search and data mining, pp. 383–392, 2012.

[216] Y. Li, B.-J. P. Hsu, and C. Zhai, “Unsupervised identification of synonymous

query intent templates for attribute intents,” in Proceedings of the 22nd ACM

international conference on Information & Knowledge Management, pp. 2029–

2038, 2013.

[217] G. Forman, H. Nachlieli, and R. Keshet, “Clustering by intent: a semi-

supervised method to discover relevant clusters incrementally,” in Joint Euro-

pean Conference on Machine Learning and Knowledge Discovery in Databases,

pp. 20–36, Springer, 2015.

[218] F. Reinaldha and T. E. Widagdo, “Natural language interfaces to database

(NLIDB): Question handling and unit conversion,” in 2014 International Con-

ference on Data and Software Engineering (ICODSE), pp. 1–6, IEEE, 2014.

http://stats.espncricinfo.com/ci/engine/stats/index.html
https://bitbucket.org/ssri5/cricketnoviceexperiments/
https://bitbucket.org/ssri5/cricketnoviceexperiments/


REFERENCES 187

[219] N. Sukthankar, S. Maharnawar, P. Deshmukh, Y. Haribhakta, and V. Kam-

ble, “nQuery-A Natural Language Statement to SQL Query Generator,” in

Proceedings of ACL 2017, Student Research Workshop, pp. 17–23, 2017.

[220] K. Höffner, J. Lehmann, and R. Usbeck, “CubeQA—question answering on

RDF data cubes,” in International Semantic Web Conference, pp. 325–340,

Springer, 2016.

[221] M. Atzori, G. M. Mazzeo, and C. Zaniolo, “QA3: A natural language approach

to question answering over RDF data cubes,” Semantic Web, vol. 10, no. 3,

pp. 587–604, 2019.

[222] kore.ai, “Auto dialog generation — kore.ai.” https://kore.ai/platform/

features/auto-dialog-generation/, 2020. (Accessed on 08/28/2020).

[223] lang.ai, “Unsupervised intent discovery - technology — lang.ai.” https://

lang.ai/tech. (Accessed on 08/28/2020).

[224] D. Lee, “How we analyzed 200k messages to design a chatbot — chat-

bots magazine.” https://chatbotsmagazine.com/how-we-analyzed-200k-

messages-to-design-a-chatbot-264a13724752, January 2019. (Accessed

on 08/28/2020).

[225] C. Greyling, “Handle compound user intents in your chatbot —

medium.” https://medium.com/@CobusGreyling/handle-compound-user-

intents-in-your-chatbot-cac598c5fea5, May 2020. (Accessed on

08/28/2020).

[226] C. Greyling, “How to resolve intent conflicts within your chat-

bot — medium.” https://medium.com/@CobusGreyling/how-to-resolve-

intent-conflicts-within-your-chatbot-74f567d30d48, July 2020. (Ac-

cessed on 08/28/2020).

[227] A. C. Gonzalez, “Sorry i didn’t get that! — how to understand what

your users want.” https://building.lang.ai/sorry-i-didnt-get-that-

how-to-understand-what-your-users-want-a90c7ca18a8f, October 2018.

(Accessed on 08/28/2020).

https://kore.ai/platform/features/auto-dialog-generation/
https://kore.ai/platform/features/auto-dialog-generation/
https://lang.ai/tech
https://lang.ai/tech
https://chatbotsmagazine.com/how-we-analyzed-200k-messages-to-design-a-chatbot-264a13724752
https://chatbotsmagazine.com/how-we-analyzed-200k-messages-to-design-a-chatbot-264a13724752
https://medium.com/@CobusGreyling/handle-compound-user-intents-in-your-chatbot-cac598c5fea5
https://medium.com/@CobusGreyling/handle-compound-user-intents-in-your-chatbot-cac598c5fea5
https://medium.com/@CobusGreyling/how-to-resolve-intent-conflicts-within-your-chatbot-74f567d30d48
https://medium.com/@CobusGreyling/how-to-resolve-intent-conflicts-within-your-chatbot-74f567d30d48
https://building.lang.ai/sorry-i-didnt-get-that-how-to-understand-what-your-users-want-a90c7ca18a8f
https://building.lang.ai/sorry-i-didnt-get-that-how-to-understand-what-your-users-want-a90c7ca18a8f


188 REFERENCES

[228] M. Du and S. Yao, “Discovering and classifying in-app message intent at airbnb

— medium.” https://medium.com/airbnb-engineering/discovering-

and-classifying-in-app-message-intent-at-airbnb-6a55f5400a0c,

January 2019. (Accessed on 08/28/2020).

[229] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent dirichlet allocation,” Journal

of machine Learning research, vol. 3, no. Jan, pp. 993–1022, 2003.

[230] H. Jelodar, Y. Wang, C. Yuan, X. Feng, X. Jiang, Y. Li, and L. Zhao, “La-

tent Dirichlet Allocation (LDA) and Topic modeling: models, applications, a

survey,” Multimedia Tools and Applications, vol. 78, no. 11, pp. 15169–15211,

2019.

[231] G. Sandberg, “A primer on relational data base concepts,” IBM systems jour-

nal, vol. 20, no. 1, pp. 23–40, 1981.

[232] M. Dadashzadeh and D. W. Stemple, “Converting SQL queries into relational

algebra,” Information & management, vol. 19, no. 5, pp. 307–323, 1990.

[233] I. Androutsopoulos, G. D. Ritchie, and P. Thanisch, “Natural language inter-

faces to databases-an introduction,” arXiv preprint cmp-lg/9503016, 1995.

[234] I. Corporation, “Watson Assistant v2 - IBM Cloud API Docs.”

https://cloud.ibm.com/apidocs/assistant/assistant-v2. (Accessed on

15/08/15/2020, See the first “Tip”).

[235] I. Corporation, “Watson Assistant API overview.” https://cloud.ibm.com/

docs/assistant?topic=assistant-api-overview. (Accessed on

20/07/2019, See the second “Note”).

[236] A. Inc., “lex-models - AWS CLI 1.18.101 Command Reference.” https:

//docs.aws.amazon.com/cli/latest/reference/lex-models/index.html.

(Accessed on 20/07/2019).

[237] G. LLC, “Input and output contexts — Dialogflow Documentation —

Google Cloud.” https://cloud.google.com/dialogflow/docs/contexts-

input-output. (Accessed on 20/07/2019).

https://medium.com/airbnb-engineering/discovering-and-classifying-in-app-message-intent-at-airbnb-6a55f5400a0c
https://medium.com/airbnb-engineering/discovering-and-classifying-in-app-message-intent-at-airbnb-6a55f5400a0c
https://cloud.ibm.com/apidocs/assistant/assistant-v2
https://cloud.ibm.com/docs/assistant?topic=assistant-api-overview
https://cloud.ibm.com/docs/assistant?topic=assistant-api-overview
https://docs.aws.amazon.com/cli/latest/reference/lex-models/index.html
https://docs.aws.amazon.com/cli/latest/reference/lex-models/index.html
https://cloud.google.com/dialogflow/docs/contexts-input-output
https://cloud.google.com/dialogflow/docs/contexts-input-output


Publications

1. Saurabh Srivastava and T.V. Prabhakar. A Reference Architecture for Appli-

cations with Conversational Components. In IEEE 10th International Confer-

ence on Software Engineering and Service Science (ICSESS), Beijing, China.

2019.

2. Saurabh Srivastava and T.V. Prabhakar. Desirable Features of a Chatbot-

building Platform. In 2nd IEEE International Conference on Humanized Com-

puting and Communication (HCCAI), Irvine, USA. 2020. (accepted)

3. Saurabh Srivastava and T.V. Prabhakar. Hospitality of Chatbot building Plat-

forms. In 2nd ACM SIGSOFT International Workshop on Software Qualities

and Their Dependencies (SQUADE), Tallinn, Estonia. 2019.

4. Saurabh Srivastava, Sumit Kalra, and T.V. Prabhakar. Contextual Reactive

Pattern on Chatbot-building Platforms. In 25th European Conference on Pat-

tern Languages of Programs (EuroPLoP), Kloster Irsee, Bavaria, Germany.

ACM ICPS, 2020. (accepted)

5. Saurabh Srivastava and T.V. Prabhakar. Intent Sets - Architectural Choices

for Building Practical Chatbot. In 12th International Conference on Computer

and Automation Engineering (ICCAE), Sydney, Australia. ACM ICPS, 2020.


	List of Tables
	List of Figures
	1 Introduction
	1.1 Literature Review
	1.1.1 History of Chatbots
	1.1.2 Selected Previous Work on Chatbot Design

	1.2 Challenges in Building Chatbots
	1.3 Research Questions
	1.4 Thesis Organisation

	2 Chatbot and its Environment
	2.1 Architecture of the Chatbot
	2.1.1 Voice Utils
	2.1.2 Intent Classifier
	2.1.3 Parameter Extractor
	2.1.4 Response Generator
	2.1.5 Flow Manager

	2.2 Architecture of the Containing System
	2.2.1 Fulfilments and Actions
	2.2.2 System Interface

	2.3 Reference Architecture for the Application
	2.3.1 Concrete Architecture using Dialogflow
	2.3.2 Concrete Architecture using Watson Assistant
	2.3.3 Concrete Architecture using Lex

	2.4 Related Work and Further Reading
	2.5 Summary

	3 Chatbot-building Platforms
	3.1 Reasons for Custom Development
	3.2 Types of Chatbot-building Platforms
	3.2.1 NLP-as-a-Service Platforms
	3.2.2 Conversation-as-a-Service Platforms
	3.2.3 ChatWidget-as-a-Service Platforms

	3.3 Dashboards on Chatbot-building Platforms
	3.3.1 CWaaS Platforms
	3.3.2 CaaS Platforms

	3.4 Desirable Features of a Chatbot-building Platform
	3.4.1 Features for Intents Management
	3.4.2 Features for Entities Management
	3.4.3 Features for Defining Fulfilments
	3.4.4 Features Related to Integrations
	3.4.5 Features for Managing Conversational Flow

	3.5 Hospitality of a Chatbot-building Platform
	3.5.1 Understanding Hospitality
	3.5.2 Using Hospitality

	3.6 Case Studies
	3.6.1 Sample application of the Hospitality Framework
	3.6.1.1 Phase 1: Identify Quality Attributes
	3.6.1.2 Phase 2: Identify Architectural Tactics
	3.6.1.3 Phase 3: Identify Platform Features
	3.6.1.4 Phase 4: Evaluate Platforms
	3.6.1.5 Phase 5: Calculate Hospitality Indices

	3.6.2 Support of Desired Features in Three Platforms

	3.7 Related Work and Further Reading
	3.8 Summary

	4 Contextual Reactive Pattern
	4.1 Pattern Overview
	4.1.1 Context
	4.1.2 Problem
	4.1.3 Forces

	4.2 Solution
	4.2.1 Structure
	4.2.2 Dynamics
	4.2.3 Deployed Chatbot's Sketch

	4.3 Pattern Examples
	4.3.1 Dialogflow
	4.3.2 Watson Assistant
	4.3.3 Lex

	4.4 Case Study
	4.4.1 User Stories
	4.4.2 The First Sprint
	4.4.3 The Second Sprint
	4.4.4 Comparison of Sprint Deliverables

	4.5 Consequences
	4.6 Summary

	5 Intent Sets
	5.1 Intent Sets
	5.1.1 Properties of Intent Sets

	5.2 Case Study
	5.2.1 Experimental Setup
	5.2.2 Experiments

	5.3 Observations
	5.3.1 The Accuracy Experiment
	5.3.2 The Order Experiment
	5.3.3 Discussion

	5.4 Related Work and Future Reading
	5.5 Summary

	6 Conclusions and Future Work
	6.1 Conclusions
	6.2 Future Work

	Appendices
	A Guide to Privacy Policy Resources of Selected Platforms
	B Explanations for Selected Values in Table 3.12
	C Comparison of the Elements of Contextual Reactive Pattern
	References
	Index
	Publications

