
Hospitality of Chatbot Building 
Platforms

Saurabh Srivastava, T.V. Prabhakar
Department of Computer Science & Engineering, IIT Kanpur, India

International Workshop on Software Qualities and Their Dependencies (SQUADE)
27th ACM Joint Meeting on European Software Engineering Conference and Symposium on 

the Foundations of Software Engineering
Tallinn, Estonia
August 26, 2019



What lies ahead?

• Motivation
• Chatbots
• Chatbot building Platforms
• Quality Attributes and Architectural Tactics

• The Hospitality Framework
• Phases of the framework
• The Hospitality Metric
• Results

• Discussion



Introduction to Chatbots and 
Quality Attributes
Part 1



Chatbots – What are they?

• It is a colloquial term used to refer to a class of software components, 
which can interact with users using Natural Languages
• The communication medium can be text or speech
• The communication could be flexible or constrained
• The bot (shortened term for "chatbot") could be an independent

component or part of a larger application
• A chatbot can itself be divided in multiple sub-components
• In the present work, when we say "chatbot", we actually mean "chatbot core"

• Examples – Google Assistant, FB Messenger Bots, E-commerce Bots





Examples of a
constrained interface





Example of a
flexible interface



Chatbot building Platfoms – How do they help?

• There are a number of commercial platforms available today, which 
can aid in development and deployment of chatbots
• These platforms provide a set of features which are useful in 
• Defining the types of queries the bot will cater to (aka Intents)
• Providing details of each type, including specific pieces of information that 

the user will supply (often called Entities or Parameters)
• Supplying response templates or callbacks (usually known as Fulfilments)
• Orchestrating conversational flow, as close as possible, to a conversation 

between two human beings (we refer to it as Flow Management)

• Examples – Google Dialogflow, IBM Watson Assistant, Amazon Lex





Definitions for Intents,
Entities, Fulfilments etc.

Test Console to check 
responses for a given query

List of defined and 
"added" intents

Name of the Chatbot



Details of an Intent



Detailes of an Entity



Configuring an external URL to 
process some queries



Detailed Diagnostic Information for a sample query



Example of Flow Management –
IBM Watson Assistant's Dialog Tree

Definition of a "node"
In the Dialog Tree



Example of Flow Management –
IBM Watson Assistant's Dialog Tree

Definition of a "node"
In the Dialog Tree



Example of Flow Management –
IBM Watson Assistant's Dialog Tree

Definition of a "node"
In the Dialog Tree

1 2

3



Quality Attributes – Definition

• Len Bass, Paul Clements and Rick Kazman, in their book titled 
Software Architecture in Practice, 3rd Edition, Chapter 4, define
• A quality attribute (QA) is a measurable or testable property of a system that 

is used to indicate how well the system satisfies the needs of its stakeholders.

• They go on to say
• You can think of a quality attribute as measuring the “goodness” of a product 

along some dimension of interest to a stakeholder.

• Some examples of QAs are Reliabiity, Performance, Interoperability, 
Availability, Modifiability, Usability etc.



Architectural Tactics – Definition

• In the same chapter, the authors later explain
• We now turn to the techniques an architect can use to achieve the required 

quality attributes. We call these techniques architectural tactics.

• They continue as
• A tactic is a design decision that influences the achievement of a quality attribute 

response – tactics directly affect the system's response to some stimulus.

• Tactics are usually associated with the QA(s) which are dominantly 
affected by their application
• Example: Reduce Coupling and Increase Cohesion are common 

architectural tactics for Modifiability



The Hospitality Framework
Part 2



Achieving quality in (chatbot) applications

• For any software system, achieving quality involves meeting SLAs, 
keeping up with competition, providing a great user experience etc.
• An independent chatbot, or an application with a chatbot component 

also have similar concerns
• The architect of the application needs to pen down the non-

functional requirements of the application, and relate them to QAs
• However, realising these QAs in an application is not a trivial task, 

because any efforts to incorporate one, may hamper some other QAs
• There are therefore, critical design trade-offs, that must be evaluated



Trade-offs between QAs

• The process of achieving quality in applications may involve 
understanding the impact of various architectural tactics, for example:

1. Application of the Encrypt Data tactic for Security, would result in additional 
computation, affecting Performance negatively

2. Application of the Maintain Multiple Copies of Data tactic for Performance, 
would result in a partitioned database, making Availability hard to achieve

• One or more attributes may have to be “prioritised” over others, in 
case achieving “all” of them is not feasible (usually the case)
• Exactly which attributes are to be priortised, depends on the given use 

case and the user requirements



Hospitality Framework

• The Hospitality Framework attempts to tackle one part of the problem 
of achieving quality trade-offs – the role of a Platform
• From analysis to development to deployment, software practitioners 

use a number of commercially available platforms
• The Hospitality Framework attempts to evaluate the usefulness of a 

platform towards realisation of some “quality goal”
• The goals here could be achieving a quality attribute in general, or 

encorporation of a particular architectural tactic
• Hospitality framework evaluates a platform's support for achieving them



Phases in application of Hospitality Framework



1. Identify Quality Attributes



The Fruit-selling bot – a simple use case

• In order to show the application of the framework, we'll pick the 
simple use case of an application to be built for a fruit selling shop
• The shop wants a chatbot to be deployed on their website, as well as 

their app, which can interact with (potential) customers
• It should be able to answer common user queries – like available 

fruits, their prices, directions to the physical store etc.
• It should also be able to contact the shop's backend servers to place 

orders, generate shipping labels, assign delivery boys etc.
• While the website could be "text-only", the app should also have a 

"voice" interface to receive audio inputs and provide audio responses



Requirements – Functional vs Non-functional
Functional Requirements Non-functional Requirements

• Need an app as well as a website • Keep chat transcripts onsite (privacy concerns)

• User could browse through fruits available in the 
inventory

• Chatbot component needs access from multiple 
locations (app/website)

• Answer user queries about fruit prices, availability, etc. • Will have access to inventory, require some 
authentication

• If the user needs directions to the store, provide 
guidance

• Need voice-to-text/text-to-voice capability, if the 
chatbot cannot handle it implicitly

• Allow typed text/spoken queries on the app • Keep the bot simple; don’t attempt to answer queries 
with low confidence

• Add counter-examples to avoid responding to queries 
like “How’s the weather”?

• Validate the bot before deployment, check behaviour
for common user utterances

• Response strings and prompts might 
change/customised



Requirements – Functional vs Non-functional
Functional Requirements Non-functional Requirements

• Need an app as well as a website • Keep chat transcripts onsite (privacy concerns)

• User could browse through fruits available in the 
inventory

• Chatbot component needs access from multiple 
locations (app/website)

• Answer user queries about fruit prices, availability, etc. • Will have access to inventory, require some 
authentication

• If the user needs directions to the store, provide 
guidance

• Need voice-to-text/text-to-voice capability, if the 
chatbot cannot handle it implicitly

• Allow typed text/spoken queries on the app • Keep the bot simple; don’t attempt to answer queries 
with low confidence

• Add counter-examples to avoid responding to queries 
like “How’s the weather”?

• Validate the bot before deployment, check behaviour
for common user utterances

• Response strings and prompts might 
change/customised

We will be focusing here 
for the rest of the phases



Quality Attributes for the sample use case

• Modifiability
• The shop may wish to customize or update the responses that they show to 

the user, e.g. "Your fruits are shipped" ⇒ "You'll have your apples soon !!"

• Security & Privacy
• Usually the tactics for these two attributes are often intertwined
• Since the bot will interact with user data, keeping it secure as well as away 

from prying eyes should be a concern

• Interoperability
• We have two different platforms for deployment, with different I/O needs

• Reliability
• It is better to cater to less functionality well, than more functionality poorly



2. Identify Architectural Tactics



Tactics for Modifiability

Tactic Reason behind choosing this tactic

Abstract Common Services Keeping intents, parameters and flow logic separate allows adding or 
modifying them independently.

Defer Binding Allows tailored responses based on user inputs.

Split Module Separates the intent matching from business logic.



Tactics for Security & Privacy

Tactic Reason behind choosing this tactic

Authenticate Communication Prevents the chatbot from unauthorized access (superfluous calls to platform 
may incur additional cost).

Protect Data at Rest Keeps the conversations between users and the store private.

Protect Data in Motion Prevents breaches due to eavesdropping (e.g. Man-in-the-middle attacks).



Tactics for Interoperability

Tactic Reason behind choosing this tactic

Manage Interfaces Require both ingress and egress capabilities, to and from the chatbot (e.g. API 
access).

Support multiple Data Formats Chatbot needs to take queries (and send responses) in both text and audio 
formats.



Tactics for Reliability

Tactic Reason behind choosing this tactic

Validate common use cases Verifies that expected user utterances are properly processed by the chatbot.

Prevent Failures Restricts the chatbot from responding with low confidence.

Recover from Failures Handles known nuances of common conversation (e.g. assuming defaults for 
missing information).



3. Identify Platform Features



Finding features of a given platform

• This phase involves some "reading"
• Not in-depth, but good enough to get an idea

• For Chatbot platforms, the best place to read are the numerous 
blogging websites, which put up articles about latest news
• The Chatbot platforms are still evolving (and documenting changes is 

usually not a priority), making these articles an even better source
• Reading recent articles that compare two or more platforms may 

provide a good idea about their offerings
• However, most of the articles do have biases (they tend to favour one 

platform more than the others)





Platform Features for Modifiability

Tactic Desired Platform Features

Abstract Common Services

Ability to create intents independently

Ability to create parameters independently

Ability to manage conversation flow independently

Defer Binding

Ability to externalise response generation

Allow placeholders in response to fill parameter values

Allow conditional responses

Split Module
Ability to externalise parameter validation

Ability to externalise response generation



Platform Features for Security & Privacy

Tactic Desired Platform Features

Authenticate Communication
Ability to create and verify credentials for accessing the chatbot

Ability to supply credentials to an external source

Protect Data at Rest
Ability to create and verify credentials for accessing chat data

Ability to keep chat transcripts onsite

Protect Data in Motion
Use secured channels only for communication (e.g. allow https and block 
http)



Platform Features for Interoperability

Tactic Desired Platform Features

Manage Interfaces

Allow API access for intent classification

Allow API access for slot filling

Ability to trigger external events

Support multiple Data 
Formats

Ability to receive voice input

Provide transcribed text from speech

Ability to send voice output



Platform Features for Reliability

Tactic Desired Platform Features

Validate common use-cases
Provide Test Console to observe chatbot response for specific inputs

Provide Test Console to observe the debug information for specific inputs

Prevent Failures

Ability to set confidence threshold for intent classification

Ability to provide counter-examples

Ability to digress and return

Recover from Failures
Ability to provide default conversation flow

Ability to provide default values for slots



4. Evaluate Platform



Platform Inspection

• At this stage, the task of inspecting a platform becomes crucial
• This involves searching for particular keywords on the web
• For example: "dialogflow set confidence" or "lex provide speech input"
• The results for these searches will usually provide a quick answer to questions 

like "Can I set a minimum confidence threshold for intent firing in dialogflow?"

• It also involves looking at specific pages in the documentation archives 
of the particular platform
• For example: Test the Bot Using Speech Input (AWS CLI)

• While in some cases, you may get a straight Yes/No answer to the 
question, sometimes, the decision may be more complex

https://docs.aws.amazon.com/lex/latest/dg/gs-create-test-speech.html


Feature Thresholding

• There can be cases where a feature may only be "partially" supported 
by a platform
• In such cases, we need to perform what we have termed here as 

Feature Thresholding
• The idea of feature thresholding is that in case a feature is only 

partially supported, some additional effort will be required
• The question is – how much work the developer has to do here? If the work is 

substantial, I count it as a Nay, otherwise I term it as Yay

• To do so, the architect can create Feature Cards, and distribute them 
among the stakeholders (developers, testers, integrators etc.)



Feature Cards

• Feature Cards can be made on a "per feature, per platform" basis, 
where the architect is in two minds
• The Feature Cards should mention the platform name, required 

feature description, and the related offering by the platform
• The stakeholders can opine whether they consider this feature "good 

enough" (meaning that the custom efforts will be minimal) or not
• Each stakeholder provides a decision – Yes or No – as well as reasons 

for the decision
• The architect can use these cards before taking a final call



Snapshot from the paper – Hospitality of Chatbot building Platforms, Saurabh Srivastava and T.V. Prabhakar,
SQUADE, Tallinn, Aug 26, 2019

Examples of Feature Cards



Feature Table (1/3)

Desired Platform Feature Watson Assistant Dialogflow Lex

Ability to create intents independently

Ability to create parameters independently

Ability to manage conversation flow independently ✘ ✘
Ability to externalise response generation ✘ ✘
Allow placeholders in response to fill parameter values

Allow conditional responses ✘ ✘
Ability to externalise parameter validation ✘ ✘
Ability to externalise response generation ✘ ✘



Feature Table (2/3)

Desired Platform Feature Watson Assistant Dialogflow Lex

Ability to create and verify credentials for accessing the 
chatbot

Ability to supply credentials to an external source ✘ ✘
Ability to create and verify credentials for accessing chat 
data

Ability to keep chat transcripts onsite ✘ ✘
Use secured channels only for communication (e.g. 
allow https and block http)

Allow API access for intent classification

Allow API access for slot filling

Ability to trigger external events ✘ ✘
Ability to receive voice input ✘



Feature Table (3/3)

Desired Platform Feature Watson Assistant Dialogflow Lex

Provide transcribed text from speech

Ability to send voice output

Provide Test Console to observe chatbot response for 
specific inputs

Provide Test Console to observe the debug information for 
specific inputs

Ability to set confidence threshold for intent classification ✘
Ability to provide counter-examples ✘
Ability to digress and return ✘ ✘
Ability to provide default conversation flow

Ability to provide default values for slots ✘



5. Calculate Hospitality Indices



Hospitality Indices

• The idea behind application of this framework is to be able to 
"quantify" the "goodness" of a platform for a given use case
• This means, we need a metric to compare the platforms
• Hospitality Index is a measure that provides a number between 0 and 
1 (0 being "bad" and 1 being "good")
• The idea is based on a weighted-sum analysis – provide a weight to a 

given feature or a given tactic, and compute a bottom-up score
• Hospitality Index can be computed at two levels – Tactic or QA
• Hospitality Index at QA level, uses respective Hospitality Indices at Tactic level



Hospitality Indices at Tactic Level (1/2)

Snapshot from the paper – Hospitality of Chatbot building Platforms, Saurabh Srivastava and T.V. Prabhakar,
SQUADE, Tallinn, Aug 26, 2019



Hospitality Indices at Tactic Level (2/2)

Snapshot from the paper – Hospitality of Chatbot building Platforms, Saurabh Srivastava and T.V. Prabhakar,
SQUADE, Tallinn, Aug 26, 2019



Hospitality Indices at Quality Attribute Level

Quality Attribute Hospitality Index

Watson Assistant Dialogflow Lex

Modifiability 0.553 0.773 0.330

Security & Privacy 0.833 0.833 0.667

Interoperability 0.330 1.000 0.830

Reliability 1.000 0.887 0.500



Sample Computation of Hospitality Index

• Hospitality Index at the Defer Binding tactic
• Assuming equal weights to all features, we have:

• Watson Assistant – (0 + 1 + 1)/3 = 0.66
• Dialogflow – (0 + 1 + 1)/3 = 0.66
• Lex - (0 + 1 + 1)/3 = 0.33

• Hospitality Index at the Modifiability QA
• Assuming equal weights to all tactics, we have:

• Watson Assistant – (1 + 0.66 + 0)/3 = 0.553
• Dialogflow – (0.66 + 0.66 + 1) = 0.773
• Lex - (0.66 + 0.33 + 0) = 0.33



Discussion
Part-3



Uses of the framework

• Selecting a platform
• We can calculate Hospitality Indices at the QA level for each QA of interest
• We can then use methods like Multi-criteria Decision Analysis to come up 

with a ranking of the platforms for use

• Selecting other architectural components
• The analysis provides a great insight into the capabilities and features 

exposed by the platform
• This can provide architectural hints for architecting other parts of the system
• For example, Watson Assistant doesn't provide an audio interface, however, 

by composing solutions using Watson Speech-to-Text and Watson Text-to-
Speech, an application can still provide the "speech" interface



Thank You
That'll be all from my side. Over to you !!


