Department of Mechanical Engineering
IIT(ISM) Dhanbad
1. [I. F. 4.98, CIT 1] Thermal optimization of shock-induced separation in a natural laminar airfoil operating at off-design conditions – A. Sengupta, and N. Shandilya, Physics of Fluids, Special Collection: K. R. Sreenivasan: A Tribute on the occasion of his 75th birthday, 36(4), 046117, (2024). https://doi.org/10.1063/5.0202482
2. [I. F. 4.98, CIT 2] Separation-induced transition on a T106A blade under low and elevated free stream turbulence – A. Sengupta, N. Gupta and B. N. Ubald, Physics of Fluids, 36(2), 026119, (2024). https://doi.org/10.1063/5.0189358
3. [I. F. 1.7, CIT 0] Modeling the co-combustion of bi-fuel blends in a drop tube furnace: A numerical approach – S. Aich, B. K. Nandi, A. Sengupta and P. Sharma, Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 0(0), 1-15 (2024). https://doi.org/10.1177/09576509231225554
4. [I. F. 2.902, CIT 0] Characterizing pulverized coal combustion for high-ash content Indian coal – A. Sengupta, S. K. Das, B. K. Nandi and P. Sharma, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 46(1), 244-261 (2024). https://doi.org/10.1080/15567036.2023.2282151
5. [I. F. 4.98, CIT 4] Compressibility effects on the flow past a T106A low pressure turbine cascade – A. Sengupta, P. Sundaram, Physics of Fluids, 35(10), 106110, (2023). https://doi.org/10.1063/5.0172334
6. [I. F. 4.98, CIT 4] Multi-layer Rayleigh-Taylor instability: Consequences for naturally occurring stratified mixing layers – A. Sengupta, H. N. Ulloa, B. Joshi, Physics of Fluids, 35(10), 102110, (2023). https://doi.org/10.1063/5.0170319
7. [I. F. 4.98, CIT 7] Exploring role of aspect ratio for compressible flow in a rectangular lid-driven cavity with a vertical temperature gradient – B. Joshi, A. Sengupta, P. Sundaram, Physics of Fluids, 35(6), 066135, (2023). https://doi.org/10.1063/5.0155851
8. [I.F. 3.17, CIT 14] Global spectral analysis: Review of numerical methods — Pierre Sagaut, V.K. Suman, P. Sundaram, M.K. Rajpoot, Y.G. Bhumkar, S. Sengupta, A. Sengupta, T.K. Sengupta, Comput. Fluids, 261:105915 (2023). https://doi.org/10.1016/j.compfluid.2023.105915
9. [I.F. 3.17, CIT 11] Role of unstable thermal stratifications on the Rayleigh-Taylor instability — A. Sengupta and A. K. Verma, Comput. Fluids, 252:105773 (2023). https://doi.org/10.1016/j.compfluid.2022.105773
10. [I.F. 4.98, CIT 11] Effects of stabilizing and destabilizing thermal gradients on reversed shear-stratified flows: Combined Kelvin-Helmholtz Rayleigh-Taylor instability— A. Sengupta and B. Joshi, Phys. Fluids, 35(1), 012118 (2023). https://doi.org/10.1063/5.0135692
11. [I.F. 3.553, CIT 12] A non-overlapping high accuracy parallel subdomain closure for compact scheme: Onset of Rayleigh-Taylor instability by ultrasonic waves – P. Sundaram, A. Sengupta, T. K. Sengupta, J. Comput. Phys., 470, 111593 (2022). https://doi.org/10.1016/j.jcp.2022.111593
12. [I.F. 4.98, CIT 10] Thermally-stratified free shear layers: Combined Kelvin-Helmholtz Rayleigh-Taylor instability – A. Sengupta, B. Joshi, A. K. Verma, Physics of Fluids, 34(9), 094113 (2022). https://doi.org/10.1063/5.0118124
13. [I.F. 4.98, CIT 12] Controlling transonic shock-boundary layer interactions over a natural laminar flow airfoil by vortical and thermal excitation - A. Chakraborty, A. G. Roy, P. Sundaram, A. Sengupta, T. K. Sengupta, Physics of Fluids, 34(8), 085124 (2022). https://doi.org/10.1063/5.0104299
14. [I.F. 4.98, CIT 20] Three-dimensional direct numerical simulation of Rayleigh-Taylor instability triggered by acoustic excitation – A. Sengupta, P. Sundaram, V. K. Suman, T. K. Sengupta, Physics of Fluids, 34(5), 054108 (2022). https://doi.org/10.1063/5.0091109
15. [I.F. 4.98, CIT 12] Comparative study of transonic shock–boundary layer interactions due to surface heating and cooling on an airfoil - T. K. Sengupta, A. Chakraborty, A. G. Roy, A. Sengupta, P. Sundaram, Physics of Fluids, 34(4), 046110 (2022). https://doi.org/10.1063/5.0088362
16. [I.F. 4.98, CIT 16] A novel compressible enstrophy transport equation-based analysis of instability during Magnus-Robins effects for high rotation rates – V. K. Suman, J. Puttam, P. Sundaram, A. Sengupta, T. K. Sengupta, Physics of Fluids, 34(4), 044114 (2022). https://doi.org/10.1063/5.0090145
17. [I.F. 4.98, CIT 17] Thermal control of transonic shock-boundary layer interaction over a natural laminar flow airfoil – T. K. Sengupta, A. G. Roy, A. Chakraborty, A. Sengupta, P. Sundaram, Physics of Fluids, 33, 126110 (2021). https://doi.org/10.1063/5.0075692
18. [I.F. 3.17, CIT 19] Role of non-zero bulk viscosity in three-dimensional Rayleigh-Taylor Instability: Beyond Stokes' hypothesis – A. Sengupta, R. Samuel, P. Sundaram, T. K. Sengupta, Computers and Fluids, 225, 104995 (2021). https://doi.org/10.1016/j.compfluid.2021.104995
19. [I.F. 4.98, CIT 31] Effects of forced frequency oscillations and free stream turbulence on the separation-induced transition in pressure gradient dominated flows – A. Sengupta, P. G. Tucker, Physics of Fluids (Editor’s Pick), 32, 104105 (2020). https://doi.org/10.1063/5.0022865
20. [I.F. 4.98, CIT 23] Effects of forced frequency oscillations and unsteady wakes on the separation-induced transition in pressure gradient dominated flows – A. Sengupta, P. G. Tucker, Physics of Fluids (Editor’s Pick), 32, 094113 (2020). https://doi.org/10.1063/5.0023679
21. [I.F. 3.9, CIT 20] Nonmodal nonlinear route of transition to two-dimensional turbulence – A. Sengupta, P. Sundaram, T. K. Sengupta, Physical Review Research, 2:012033(R), (2020) https://doi.org/10.1103/PhysRevResearch.2.012033
22. [I.F. 2.707, CIT 22] Direct numerical simulation of vortex-induced instability for a zero-pressure gradient boundary layer – A. Sengupta, V. K. Suman, T. K. Sengupta, Physical Review E., 100:033118, (2019) https://link.aps.org/doi/10.1103/PhysRevE.100.033118
23. [I.F. 4.98, CIT 39] An enstrophy-based linear and nonlinear receptivity theory –A. Sengupta, V. K. Suman, T. K. Sengupta, S. Bhaumik, Phys. Fluids, 30:054106, (2018) https://doi.org/10.1063/1.5029560
24. [I.F. 1.47, CIT 9] Heat Transfer Enhancement in Ferrofluids Flow in Micro and Macro Parallel Plate Channels: A Comparative Numerical Study –A. Sengupta, P. S. Ghoshdastidar, ASME J. Thermal Science and Engineering Applications, 10(2):021012, (2018) 10.1115/1.4038483
25. [I.F. 3.17, CIT 12] Global spectral analysis of three-time level integration schemes: Focusing phenomenon – T. K. Sengupta, P. Sagaut, A. Sengupta, Kumar Saurabh, Comput. Fluids, 157:182-195, (2017) https://doi.org/10.1016/j.compfluid.2017.08.033
26. [I.F. 4.98, CIT 38] Roles of bulk viscosity on Rayleigh-Taylor instability: Non-equilibrium thermodynamics due to spatio-temporal pressure fronts – T. K. Sengupta, A. Sengupta, N. Sharma, S. Sengupta, A. Bhole, K. S. Shruti, Phys. Fluids, 28:094102, (2016) https://doi.org/10.1063/1.4961688
27. [I.F. 3.553, CIT 21] A new alternating bi-diagonal compact scheme for non-uniform grids – T. K. Sengupta and A. Sengupta, J. Comput. Phys., 310:1-25 (2016) https://doi.org/10.1016/j.jcp.2016.01.014
28. [I.F. 3.17, CIT 7] Wave properties of fourth-order fully implicit Runge–Kutta time integration schemes— S. Bhaumik, S. Sengupta and A. Sengupta, Comput. Fluids, 81:110-121 (2013) https://doi.org/10.1016/j.compfluid.2013.04.007
1. B. Joshi and A. Sengupta, Modelling Combustion of High-Ash Indian Coal in a Drop Tube Furnace. In: Ghoshal, S.K., Samantaray, A.K., Bandyopadhyay, S. (eds) Recent Advances in Industrial Machines and Mechanisms. IPROMM 2022. Lecture Notes in Mechanical Engineering. Springer, Singapore (2024). https://doi.org/10.1007/978-981-99-4270-1_53
2. N. Shandilya and A. Sengupta, Thermal flow control of transonic shock boundary layer interactions for SHM1 airfoil exhibiting shock-induced separation. Proceedings of the 10th International and 50th National Conference on Fluid Mechanics and Fluid Power (FMFP), IIT Jodhpur, Rajasthan, India, December 20-22, (2023).
3. N. Gupta and A. Sengupta, Free-stream turbulence impinging on flow inside a T106A low pressure turbine cascade. Proceedings of the 10th International and 50th National Conference on Fluid Mechanics and Fluid Power (FMFP), IIT Jodhpur, Rajasthan, India, December 20-22, (2023).
4. B. Joshi and A. Sengupta, Role of Reynolds number for flow in a rectangular lid-driven cavity with a vertical thermal gradient. Proceedings of the 10th International and 50th National Conference on Fluid Mechanics and Fluid Power (FMFP), IIT Jodhpur, Rajasthan, India, December 20-22, (2023).
5. H. Ulloa, A. Sengupta and B. Joshi, Multi-layer Rayleigh-Taylor instability in naturally occurring density-stratified mixing layers. Presented at the 76th Annual Meeting of the Division of Fluid Dynamics, APS, Washington DC, USA, 19th-21st November (2023).
6. A. Sengupta, T. K. Sengupta, S. Sengupta, V. Mudkavi, Effects of Error on the Onset and Evolution of Rayleigh-Taylor Instability. In: Deville M. et al. (eds) Turbulence and Interactions. TI 2015. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol 135. Springer, Cham, 233-239(2018) https://doi.org/10.1007/978-3-319-60387-2_25
7. A. Sengupta, N. V. Rao, P. G. Tucker, Roughness induced transition in low pressure turbines. 55th AIAA Aerospace Sciences Meeting, Texas, 9th-13th January (2017) https://doi.org/10.2514/6.2017-0303
8. A. Bhole, S. Sengupta, A. Sengupta, K. S. Shruti, and N. Sharma, Rayleigh-Taylor Instability of a Miscible Fluid at the Interface: Direct Numerical Simulation. In Proc. of IUTAM Symp. "Advances in Computation, Modeling and Control of Transitional and Turbulent Flows." (Eds.: Profs. T. K. Sengupta, S. K. Lele, K. R. Sreenivasan and P. A. Davidson) World Scientific Publ. Co., Singapore, 471-481 (2015) https://doi.org/10.1142/9789814635165_0047
1. A. Sengupta, “Compressible enstrophy transport for flow in a low pressure turbine with unsteady wakes impinging at the inflow” in the book Computational Fluid Dynamics: Novel numerical and computational approaches, Springer Nature, 2024.